

Simulation Production issues from a Physics Perspective

(based on discussions with Dave Brown, Chih-hisang Cheng, and Fergus Wilson)

Adrian Bevan / Dave Brown

Overview

- The Problem?
 - How do we cope with additional geometries
 - How users access the code / files etc.
- What do we aim for?
 - Scale
 - Scope
 - Documentation/Tools
 - Time-scales
- Resources available?
- Discussion

The Problem

- Physics studies require detailed understanding of signal and background.
 - Analyses take time to develop.
 - Will be ready at different times.
 - Will need background simulation much larger than BaBar.
 - Timescale is fixed by delivery of TDR: i.e. 2010.
- BaBar solution: single point failure that we must not repeat.
 - Filter Tools controls how we select generated/reprocessed data. Any mistake in a single mode brings everything down.
- In an ideal world analyst Joe Blogs shouldn't have to generate all of his generic physics background samples.
 - Move to a more central mode of operation using available GRID enabled resources.

- Physics target is 75ab⁻¹ in 5 years.
 - O(15ab⁻¹) per year.
 - 1ab⁻¹ corresponds to ~1.1×10⁹ B pairs and similar numbers of $\tau^+\tau^-$, uds, and ccbar.
 - Bhabha scattering has a σ 40× larger.
 - So 1 year of data taking is approximately equivalent to 15.5billion events per sample.
 - We should be aiming to generate 1 year of generic physics background for studies.
 - This can be used to extrapolate to the 75ab⁻¹ target in a straightforward way for most cases.
 - Will give confidence to the community that FastSim analyses are considering realistic scenarios.

What do we aim for? : Scale

- 15.5billion events per sample takes a while to generate:
- Example: $\tau \rightarrow 3\mu$ analysis generating events:

uds = 24Hz	Writing out all events by default – if we discard the generated events, which
ccbar = 21Hz	includes a significant overhead from I/O.
$B\overline{B} = 16Hz$	Cob: dual-core 2.0GHz Opteron 270 CPUs, 4GB memory
bhabha = 13Hz	Fell: dual quad-core 2.66GHz Xeon CPUs, 16GB memory

- Example $B^0 \rightarrow \pi^0 \pi^0$ signal MC generation rate ~17 Hz
- Naïve scaling to 15.5 billion events per sample (1yr) requires:
 - ~ 1 week to generate a single generic background sample with 1000 CPUs.

What do we aim for? : Scope

- The golden matrix has many core measurements.
 - Working group conveners have lists of these.
 - e.g. WG1 has identified
 - $(J/\psi, \phi, \eta')K^0$, $\pi^+\pi^-$, $\pi K^0(\gamma)$ + di-leptons
- J/ ψK⁰_S: Purity ~98%, don't care about large generic background production as the signal MC will give us most of the answer.
- ϕK^0 : Relatively clean (thanks to the ϕ), again, background should not be too much of a problem.
- $\pi\pi$: Starts to get to be an issue: need uds (and possibly) ccbar in addition to signal and a handful of exclusive background modes.

τ LFV searches:

Background is vital: Single event sensitivity is proportional to the background rejection ability, and SM signal has BR~10⁻⁵⁴.

Also related to the beam polarization issue.

What do we aim for? : Scope

- The golden matrix has many core measurements.
 - Working group conveners have lists of these.
 - e.g. WG1 has identified
 - $(J/\psi, \phi, \eta')K^0$, $\pi^+\pi^-$, $\pi K^0(\gamma)$ + di-leptons
 - Want to co-ordinate MC generation for all Physics WGs.
 - How many modes are in this list?
 - How much CPU required?
 - How much disk required?
 - Packaging the software for GRID submission at all sites we're interested in – how do we do this?
 - How do we achieve this? In a way open for expansion, and without a single point failure!
 - Need a simple recipe (with QA benchmarks) for users to convert their code into something robust that can be used in production-mode.

What do we aim for? : Documentation/Tools

- Should also set up a list of instructions for individual users to follow in order to generate samples of their own MC.
 - Generic wrappers to PacUserApp
 - Part of the SuperB release
- Need to evolve these simple tools into something sophisticated enough to start doing an organized production.
 - Ultimately want a database to track files produced and location stored (for now is a set of text files linked from the wiki sufficient).
- Different people have different perspectives on analyses (i.e. optimize the silicon tracker, DCH, PID, EMC, IFR).
 - Co-ordinate access to generated samples through some framework.
 - Files are not stored centrally user access is limited
 - But we should benefit from working group packages giving us access to 'standard selections' to help the DGWG effort.
 - i.e. need a good dialogue between Physics and DGWG.

What do we aim for? : Timescale

- Obviously need to run a production for the TDR: – Mid 2010?
- This can't be the first iteration!
 - Must aim for a trial run (soon) with a few modes included.
 - Anticipate a second iteration
 - ~6 months later?
 - This would give us 2 trial runs between now and the TDR production.
- Is this feasible?

What resources are available?

- CNAF (Italy)
- Caltech (US)
- QMUL (UK)
 - Managed by HEP group, so we have ROOT access as well as GRID/Batch access.
 - We can have 10% of the farm + any un-used LHC cycles.
 - Equates to a dedicated resource of about 10Tb of disk + 150CPUs.
- RAL(UK)
 - BaBar CPU allocation is penned in as transferring to SuperB.
 - Hope to be able to use this as soon as job submission works on the GRID.
- + ... ?

Discussion

- Computing and Physics have different constraints with regard to this issue...
 - What works?
 - What doesn't work?
 - What other questions do we need to ask?
 - Who's going to be in charge of co-ordinating this?
 - Let's try and reach a compromise solution *this week* that we can test as a starting point.