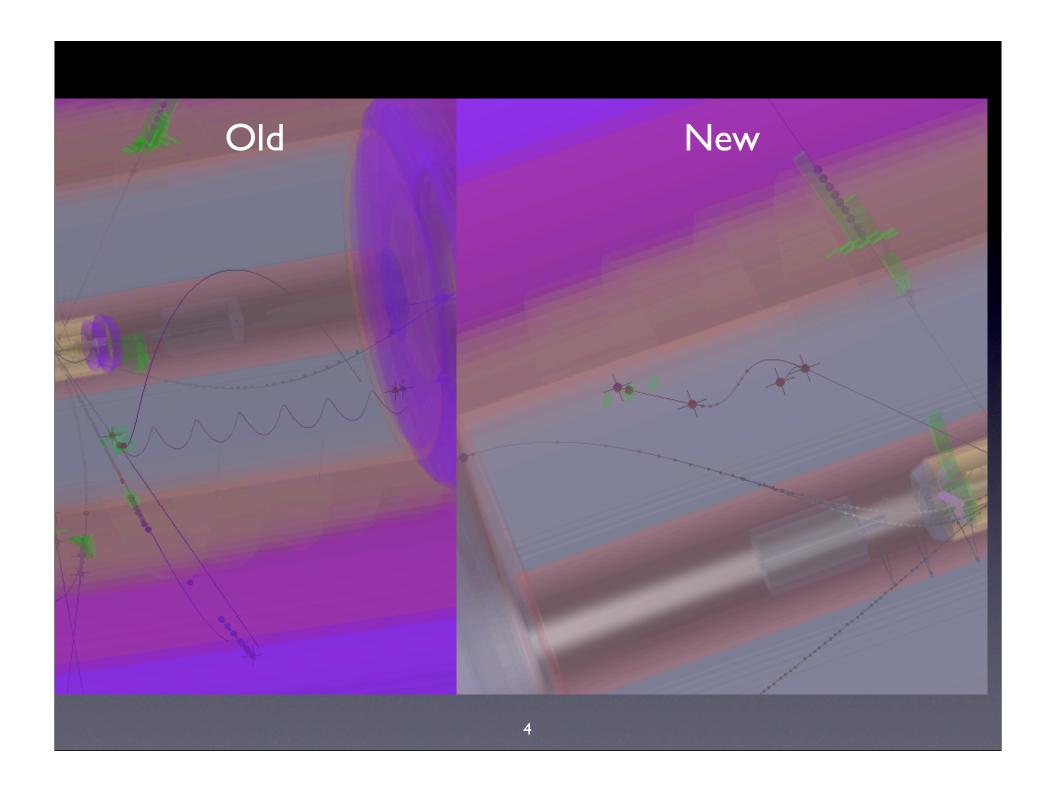
Computing Summary

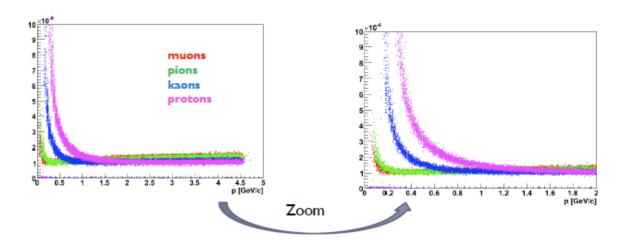
David Brown, LBNL (SuperB Computing Group)


SuperB General meeting Perugia 19 June 2009

Meeting Goals

- Review progress in all areas
 - Fastsim, fullsim, background, tools, sites, ...
- Technical discussions
 - computing experts in the same room as detector, physics, accelerator experts
- Planning for the next phases
 - Support for detector design and physics studies for EOY09 document and TDR
 - Computing TDR planning

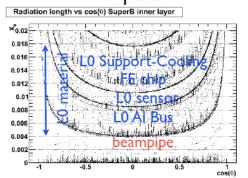
FastSim


- Technical discussion about FastSim
 - Improvements in particle swimming, MC match, Svt hit resolution model, IFR model, dE/dx
 - Still some issues with BReco, PID selectors
- Lots of results using FastSim

M. Rama

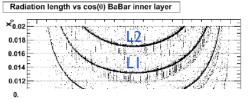
Summary and plans

- New version of the DCH dE/dx measurement implemented in FastSim
- Code ready for commit to SVN
- Next steps:
 - commit the code
 - do performance studies to tune the dE/dx output
 - use BaBar detector configuration for tuning
 - work with PID group to develop PID selectors including dE/dx

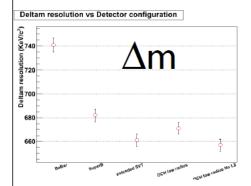

Warwick, 15/04/2009

Matteo Rama - SuperB Physics WS

Radiation length vs cos(theta) in FastSim


0.0

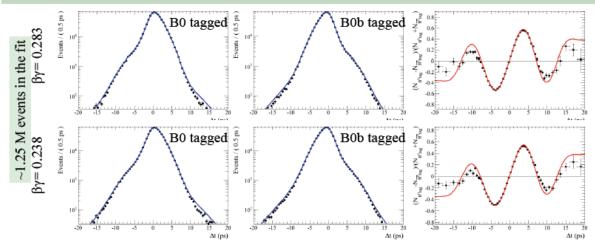
SuperB



Total amount of L0 material is $\sim 1.36\%~X_0~c$ Relative amount of material for Al bus and sup

BaBar

Resolution: Δm and ΔE


 Δ m (soft pion) resolution improves wrt BaBar configuration. Δ E resolution reflects the improvements in momentum reconstruction for DCH with lower radius.

It was recently proposed to reduce the asymmetry of the HER/LER energies from 7.0/4.0 GeV to 6.7/4.18 GeV, in

C. Cheng

- Study the S and C terms in time-dependent CP fit to B⁰→φK_S decays using the two beam energy configurations.
- Tool: fast simulation V0.0.9 + development up to ~June10.
- Mode: signal only; $B^0 \rightarrow \phi K_S$,
 - ▶ BF= 1.45×10^{-6} .
 - Generator at: $\sin 2\beta = 0.7033$, C=
- Layer 0: Si hybrid pixels at R
 z resolution= 10 μm.
- Beam spot $\sigma_x = 5.7 \mu m$, $\sigma_y = 3.5 \mu m$

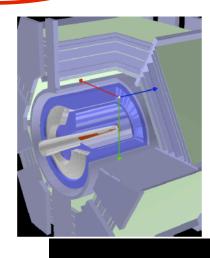
2M-event fits

βγ	0.283	0.238
S	0.70414 ± 0.00175	0.70325 ± 0.00187
С	-0.00105 ± 0.00122	-0.00289 ± 0.00125
b_core	-0.1158 ± 0.0038	-0.0929 ± 0.0034
b_tail	-0.8376 ± 0.0241	-0.7653 ± 0.0204
f_out	0.0078 ± 0.0004	0.0100 ± 0.0002
f_tail	0.1773 ± 0.0027	0.1779 ± 0.0023
s_core	1.1230 ± 0.0056	1.1314 ± 0.0049

- Resolution function is not perfect, but does not cause bias in uncertainty comparison.
- Error on S changes by +6.9%.

It does not change the result if we relax $\sigma(\Delta t)$ cut in reduced boost so that #events in the fit are the same.

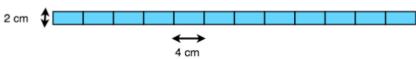
Full Sim


- Large improvements in Bruno geometry, core
 - New G4 version, stepping tuning, physics lists, ...
 - Digitization
- Focus on critical elements for TDR
 - Emc forward + transition region
 - Ifr iron
 - scoring volume for background simulation
- Becoming a useful tool

IFR @ Orsay vs IFR @ Perugia

M. Munerato

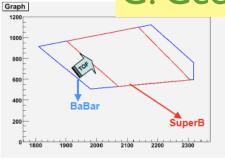
The IFR configuration at Orsay was like BaBar with some layers filled with iron. Now we have improved this configuration and we have one CDR-like.

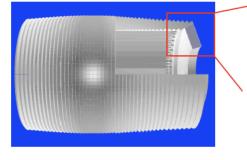

Number of gap	Material	thickness
1	scintillator	2cm
	air	0.5cm
	iron	2 cm
2	scintillator	2cm
	air	0.5cm
	iron	2cm
3	scintillator	2cm
	air	0.5cm
	iron	16cm
4	scintillator	2cm
	air	0.5cm
	iron	26cm
5	scintillator	2cm
	air	0.5cm
	iron	26cm
6	scintillator	2cm
	air	0.5cm
	iron	10cm
7	scintillator	2cm
	air	0.5cm
	iron	10cm
8	scintillator	2cm

Outline Digitization Clusterization Conclusions

Introduction to digitization Previous setup New setup

New digitization setup I

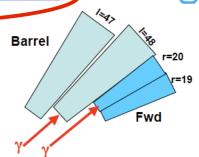

- ⇒For digitizing we subdivide the layer into strip of 4x2cm.
- ⇒ We check in what strip is the Ghit considered.
- \Rightarrow We compare the Ghit considered with other hits memorized.
- \Rightarrow Hit memorized will be in the middle of bar (x:y view) but the z position will be the average (see next slide).

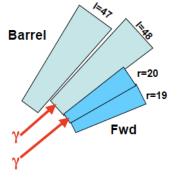


Fwd ECAL Geometry Envelop

C. Cecchi, S. Germani

- · Fill the same BaBar angular region but
 - leave space for TOF: ΔZ = (100 mm)*cos(22.7)
 - Xtals material : LSO (LYSO)
 - Xtal depth = 200 mm (~17.5 X₀)





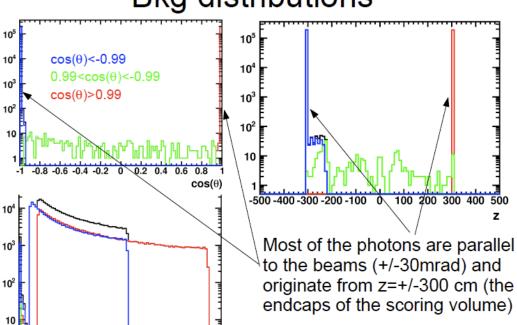
18/06/09 ECA

Investigate Barrel-Fwd Transition Region

- Quick scan in theta angle to investigate the effect of Barrel-Fwd transition region and Fwd postion with respect to the barrel
 - Backward alignemnt (room for Fwd PID)
 - Front alignement

Background Simulation

- The most important outstanding issue for physics
- Dedicated session during this meeting
 - Discussion of progress
 - Refinement of the technical design
 - adoption of a schedule


A. Simone

Conclusions

- The cleaner solution for the creation of background frames is the use of parallel geometries
 - > From the Bruno side, everything is working
- On the other hand, we can't afford to be stopped by the occasional G4 bug
- > Highest priority now in implementing fallback solution
 - > Prototype already working
 - Very short (~days) timescale for re
 - Aim is to have both solutions in pla with each other, so that
 - > parallel navigation can be thoroughly
 - > Background frame production can go

Bkg distributions

G. Simi

Software Releases

- First standalone software release V0.1.0 (R. Stroili)
 - 189 former BaBar packages imported to Padova SVN server
 - Approved for public use by BaBar
 - Release of physics code under negotiation (approval at Valencia?)
 - Code distribution through Linux RPM
 - Wiki instructions, web-browsable history, ...
- Few non-expert adopters
 - problems installing into protected (protective) areas
 - lack of tools (critical manpower need)

Computing Facilities

CNAF

- SuperB V0.1.0 release installed
- interactive access
- 100s of CPUs available for batch
- SLAC
 - dedicated machine(s) should be setup soon
- UK, Canada
 - cycles available in grid farms

A. Fella

http://mailman.fe.infn.it/superbwiki/ index.php/CNAF_services/ How_to_work_on_Fast_Simulation

CNAF services/How to work on Fast Simulation

From SuperBWiki

- 0) You need a valid BaBar account at CNAF, please refere to the official procedure reported at the link CNAF services/Account request procedure
- 1) Login to bastion.cnaf.infn.it (CNAF gateway) and to bbr-serv08.cr.cnaf.infn.it (BaBar SL4 i386 frontend machine SuperB enabled)

ssh -X <user>@bastion.cnaf.infn.it ssh -X <user>@bbr-serv08.cr.cnaf.infn.it

2) Follow the Fastsim Wiki tree instruction

http://mailman.fe.infn.it/superbwiki/index.php/FastSimDoc/standalone#Working_with_a_standalone_SuperB_FastSim_release

- 3) [Still not working, stay tuned] Running on CNAF batch system (LSF)
- Create your directory into the dedicated disk space

mkdir /storage/gpfs_babar6/sb/afella

- Write the job script:

bbr-serv08(~/SuperB/FastSim/V0.1.0_test/workdir)>cat ./FastSim-job.csh #!/bin/tcsh

echo "Starting FastSim-job"

echo "Setup the environment" source \$SBROOT/bin/superb-env.csh

echo "PacMCApp test launch"
\$SBROOT/releases/FastSim/V0.1.0/bin/Linux26SL4_i386_gcc346/PacMCApp PARENT/PacMC/snippet.tcl > \
 /data/PacMC.root

echo "end" bbr-serv08(~/SuperB/FastSim/V0.1.0_test/workdir)>

chmod 755 FastSim-job.csh

- Submit on batch system (queue superb)

bsub -o FastSim-job.log -e FastSim-job.err -q superb \

f "/storage/gpfs_babar6/sb/afella/PacMC.root < /data/PacMC.root" ./FastSim-job.csh

Production

- Major milestone for supporting TDR activity
- must integrate ALL aspects of computing
 - fullsim, fastsim, background, physics, users, grid, releases, bookkeeping, ...
 - major technical challenge for computing
- Good discussions during session
- Agreement on a technical implementation plan by all concerned parties
- Critical need for support manpower
 - Possibility of new manpower from UK

Production Model

- (Full) Simulate and store background Frames
 - Separate collections for Bhabha, pairs, Touschek, ...
- (Fast) Simulate generic backgrounds + signals
 - Overlay bkg frames
 - hit and cluster merging
- Analysis software in User packages
 - filters, sequences, output specification, macros
 - In release, allows non-experts to perform a (basic) analysis
 - Validation by WG (content) and computing (performance)
 - All validated analyses run in parallel
- Central bookkeeping, submission (manpower!)

Computing Schedule

- Freeze Release V0.1.1 (+V0.0.9) in early July
 - V0.0.9 will be the last BaBar parasitic release
- First test production in early fall 2009
 - aim for ~100 fb-1 size samples
 - main goal: verify production model
- Preliminary production in early 2010
 - ~1->10 ab-1 samples
 - all sources, analyses, geometries
- Final TDR production in summer 2010

Computing TDR

- Existing computing model is provisional
 - Will not work for the actual experiment
- Must look to new developments for TDR
 - gpu, multi-core, low-E, cloud computing, ...
 - experience and tools from LHC (+ LHC R&D)
- Planning for TDR R&D must start now
- Opportunities for new contributors!

Conclusions

- SuperB computing is supporting Detector + Physics TDR work
 - Impressive results from users
- Outstanding issue: background simulation
- Production planning started
 - clear agreement, schedule from this meeting
 - major effort over the next months
- Planning for Computing TDR work started
 - Intensive R&D needed independent of Detector +Physics TDR support work