PID Summary

Perugia SuperB Meeting, June 19th 2009

Nicolas Arnaud, for the SuperB PID group

- Sessions
- Updates on **Barrel** PID
- Updates on Forward PID
- Current issues, next steps

Sessions

 16:00->17:30
 Parallel - PID I (Convener: Jerry Vavra (SLAC) , NICOLAS ARNAUD (LAL ORSAY CNRS-IN2P3)) Description: Location: Room SAX 2

 16:00
 Studies of SiPMTs for a forward TOF PID detector (20')
 Flavio Dal Corso (PD)

 16:00
 Studies of SiPMTs for a forward TOF PID detector (20')
 Flavio Dal Corso (PD)

 16:00
 Studies of SiPMTs for a forward TOF PID detector (20')
 Flavio Dal Corso (PD)

 16:20
 DIRC engineering studies (20')
 Slides)

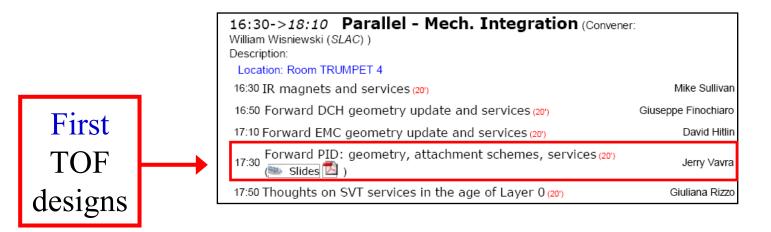
 16:40
 Status of PID in FastSim (10')
 Slides)

 16:50
 Orsay electronics R&D (20')
 Dominique Breton (LAL ORSAY) , Christophe Beigbeder (LAL)

 17:10
 LAL-Orsay status report (10')
 Slides)
 NICOLAS ARNAUD (LAL ORSAY CNRS-IN2P3)

09:00->10:30 Parallel - PID II (Convener: Jerry Vavra NICOLAS ARNAUD (LAL ORSAY CNRS-IN2P3))	(SLAC),
Description:	
Location: Room SAX 1	
09:00 Status report of the Novosibirsk activities (20)	Evgeniy Kravchenko (Budker INP)
09:20 New SOB design for a SuperB fDIRC (20) (🔭 Slides 🔁)	Jerry Vavra (SLAC)
09:40 Status of the FDIRC prototype tests with a new electron (The Slides)	Jerry Vavra (SLAC)

11:00-> <i>12:30</i> Parallel - PID III (Convener: Jerry NICOLAS ARNAUD (<i>LAL ORSAY CNRS-IN2P3</i>)) Description: Location: Room SAX 1	Vavra (<i>SLAC</i>) ,
11:00 Target chip evaluation for forward TOF detector (20) (Slides)	Jerry Vavra (SLAC)
11:20 <u>Status re</u> port on Cincinnati activities (20') (Slides)	Brian Meadows (University of Cincinnati)
Looking at DIRC bar boxes using BaBar dimuon events (20) (Slides 🔁)	NICOLAS ARNAUD (LAL ORSAY CNRS-IN2P3)
12:00 Aging tests of MCP PMTs and MAPMTs (20) Peter K	rizan (Ljubljana Univ. and J. Stefan Institute)


• Three Parallel PID sessions

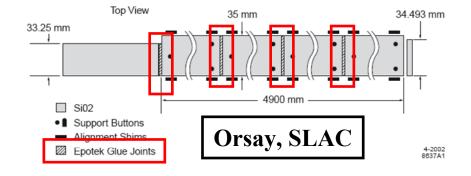
Sessions

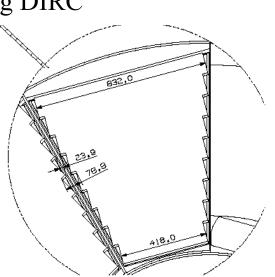
• PID-related DGWG presentations

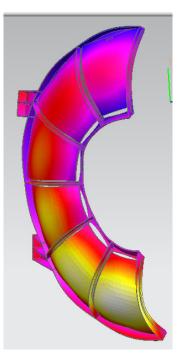
09:00->10:30 Parallel - DGWG I (Convener: Ac Paris Sud and IN2p3/CNRS), Matteo Rama (LNF)) meeting U		
Description:	,r	
Location: Room TRUMPET 1		
EVO - Phone Bridge ID: 1071377	•	
09:00 Forward PID studies (K*gamma/rho gamma) (20)	leonid Burmistrov (LaL)	First reports
09:20 forward PID: K(*) nu nubar with semileptonic tag (20') Alejandro Perez (<i>LAL</i>)	
Impact of forward PID on Vub measurement 09:40 and possible momentum resolution improvement (20) TSlides 11 (20)	Evgeniy Kravchenko (<i>Budker INP</i>) , Alejandro Perez (<i>LAL</i>)	performance

• Parallel session on mechanical integration

PID status in a nutshell

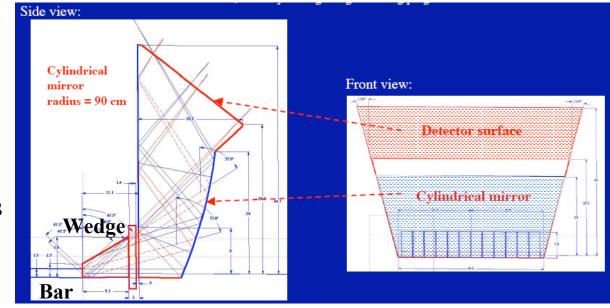

- Despite evident lack of manpower and money, things are moving forward
- Barrel PID
 - DIRC bars: QA & mechanical studies in progress
 - SOB design in progress; two options: focusing or non-focusing (DIRC-like) barrel
 - Progress on electronics: discussion on specs, R&D ongoing efforts
 - Improvements foreseen in FastSim to match design progresses
- Forward PID
 - First designs for TOF and aerogel RICH solutions
 - First physics studies quantifying improvements brought by forward PID (\rightarrow DGWG)
 - Todo: mechanical integration on the crowded forward side (drawings needed!)
 - Discussion on electronics specs. for TOF designs; still tbd for aerogel
 - Detectors to be made more realistic in FastSim

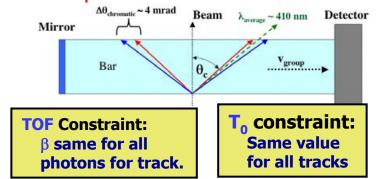

Some photodiode studies ongoing: SiPMT performances
 → More to come MaPMTs and MCP-PMTs ageing


- Continuous development of PID selectors in FastSim
 - \rightarrow Truth-based selectors for now; realistic (dE/dx, E/p, IFR) ones foreseen soon

From the BaBar DIRC to the SuperB Barrel

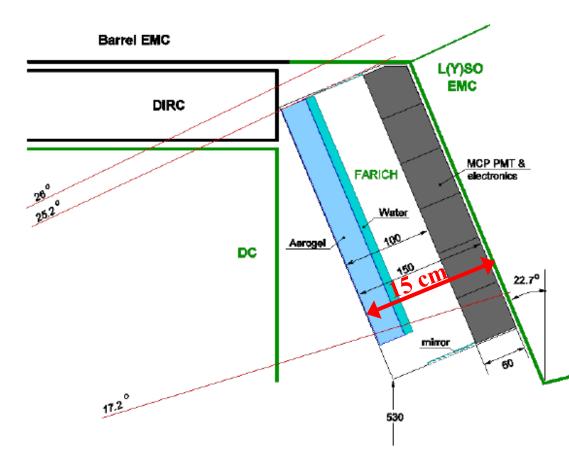
- One 4.9m-long bar = four 1.225m-long bars glued with epotek joints
 - Yellowing' effect on joints left on air
 → How are the BaBar joints?
 - Ongoing study with dimuon events
 → no hint of degradation so far
 - More tests with laser planned when bar boxes available
- M. Benettoni (Padova) is working on the mechanical design of the new SOB for a non-focusing DIRC
 - \rightarrow switch to fDIRC if option favoured
 - 2 doors
 - volume = 36001 (50% of BaBar)
 - PMTs behind quartz windows [outside fluid volume]
 - 12 sectors
 - 2,600 PMTs in total (× 32 channels) [~10% dead area]





From the BaBar DIRC to the SuperB Barrel

- Jerry Va'Vra (SLAC) presented first optics studies for a fDIRC SOB
 - Volume 10× smaller
 - 12 sub-SOBs (1/bar box) made of fused silica
 - Highly pixilated MaPMTs
 [~ 40 kChannels]
 - Design still in progress
 → improved performances
 - LDRD proposal @ SLAC to build prototype
 - \rightarrow Decision by Fall



- Brian Meadows (Cinci.) reported plans for FastSim developments
 - fDIRC simulation
 - Use TOF_{γ} to measure $1/\beta_{\text{track}}$
 - Goal is to improve $\Delta \theta_{\gamma}$ by at least a factor 3
 - Should improve π/μ separation (a) low p

First forward PID designs

• Aerogel Rich (Evgenyi Kravchenko, Nsk.)

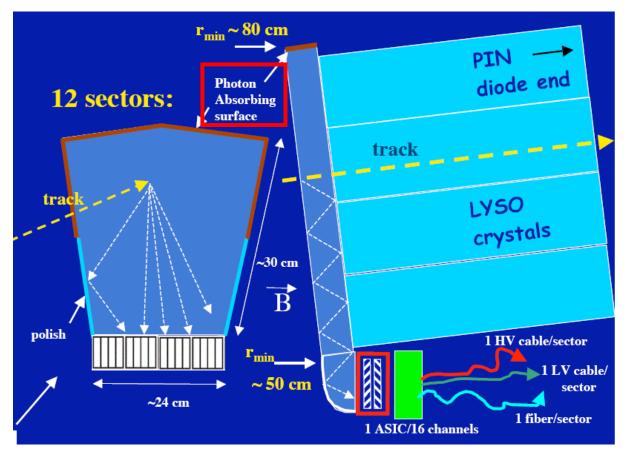
- 3-layer focusing aerogel
- 32×32 matrix Burle MCP-PMTs
- **550 PMTs**

• 28%
$$X_0$$
 aerogel = 3.5%

water = 2.5%

$$PMT = 14\%$$

support, cables = 8%


Tests with standalone simulation

 → short-term plan is to
 switch to FastSim

• Test beam preparation at VEPP-4M → Should start by the end of the year

First forward PID designs

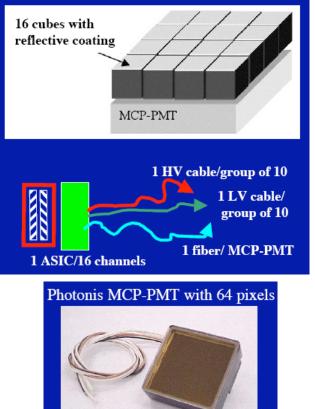
- TOF (Jerry)
 - Very limited space on the forward side
 - Lack of accurate BaBar drawings (so far?)
 - Two possible drawings: « DIRC-like »

Sector:

12 mm thick quartz bar Ave. photon path: ~15 cm 2 MCP tubes /sector 1 ASIC chips / sector 16 pixels / sector 1 fiber/ sector 1 HV cable / sector

<u>Total:</u>

12 sectors - total 48 MCP-PMTs - total !!! Req.pos. accuracy: ~0.5 mm Hang it off EMC support ? $r_{min} \sim 50 \text{ cm} (\theta \sim 15\text{-}16^\circ)$ $r_{max} \sim 80 \text{ cm} (\theta \sim 25^\circ)$ $\Delta r \sim 30 \text{ cm}$


Very few channels
 Issue: PMT rate [O(MHz)]

 → MCP-PMT with
 protection foils
 → cost is 50% γ less
 ⇒ Need accurate numbers!
 σ_{TOF} ~ 20 ps

First forward PID designs

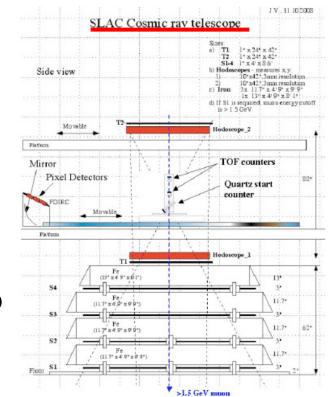
- TOF (Jerry)
 - Very limited space on the forward side
 - Lack of accurate BaBar drawings (so far?)
 - Two possible drawings: 2 « Highly Pixilated counter »

Quartz cubes radiators:

Numbers:

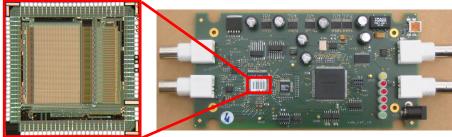
10mm thick qtz radiator \sim 7200 quartz cubes - total \sim 7200 pixels - total ~ 450 MCP-PMTs - total 1 ASIC chips/MCP-PMT ~ 450 ASIC chips - total 16 pixels/MCP-PMT 1 fiber cable/ASIC ~ 450 fiber cables - total 1 HV cable/5 MCPs ~90 HV cables - total $\mathbf{r}_{\min} \sim 50 \text{ cm} (\theta \sim 15\text{-}16^\circ)$ $r_{max} \sim 80 \text{ cm} (\theta \sim 25^{\circ})$ $\Delta r \sim 30 \text{ cm}$ Total area: $\sim 12.300 \text{ cm}^2$ Req.pos. accuracy: ~0.5 mm Hang it off EMC support ? \sim \$3k/MCP-PMT? ~1.35 M\$ - total detectors

Pros:

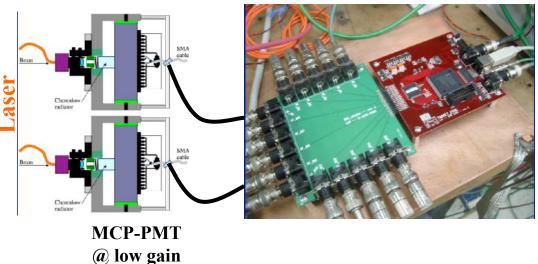

- low gain (2×10^4) \rightarrow less ageing
- good beam results
- use all photons
- simpler analysis

Cons:

- Many channels
 → many cables [space?]
- \Rightarrow May be the only viable design TBC


Electronics R&D for barrel PID

- Presentations in parallel sessions summarizing ongoing work at SLAC, Hawaii, Orsay
- Nice summary presented yesterday at ETD 2nd parallel session
 → Look at these slides for a comprehensive and detailled review
- Jerry reported on Hawaii electronics test in SLAC Cosmic Rays Telescope (CRT)
 - BLAB2 chip for fDIRC barrel detector
 - Timing resolution issues under studies
 - Most systems working reasonnably well
 - Related MC developments in progress
 - Current tests will help designing BLAB3 and prepare CRT for tests with fused Silica SOB
- Talk from Christophe Beigbeder (Orsay) about the SuperNEMO SNATS chip which could be the basis of a ~100 ps TDC design for the barrel PID



Electronics R&D for forward PID

• Dominique Breton (LAL Orsay) talked about a prototype board based on the <u>SAM (Swift Analog Memory) chip</u> for precise timing measurements

- Timing precision ~ few ps RMS
- Board being designed for tests in CRT
- Current chip still being tested, new ones to be designed
- Jerry presented tests of the Hawaii TARGET chip for timing measurement

- 2.5 GS/s
- spline interpolation \rightarrow 10 ps/bin
- Current timing precision is ~24 ps for about 40-50 pe per laser pulse
 ⇒ Proof of principle for TOF

Summary at ETD parallel session (Christophe)

- Electronics R&D should go on in parallel for barrel and forward PID detectors
 → Different requirements (# of channels, timing performances, etc.)
- Barrel PID
 - ~ 50 kChannels, ~ 100 ps timing resolution
 - Amplitude measurement in addition to time
 - \rightarrow Analog chip to be developed
 - TDC-based Orsay solution + BLAB2 Hawaii test
 - Current technologies seem to meet the design requirements
- Forward PID: more challenging
 - 10-100 times less channels, ~ 10 ps timing accuracy
 - Main other issues: occupancy ⇔ radiation level
 - Board based on analog memories (amplitude + time)
 - \rightarrow TARGET (Hawaii) and SAM (Orsay) ongoing tests
- CRT: main test bench
 - \rightarrow Boards to be prepared in Orsay; few months timescale
- Proposal for PID electronics integration in ETD architecture to be presented soon

Photodetector R&D

- Flavio Dal Corso (Padova) presented a report on the characterization of SiPMTs:
 - I/V curves, gain & efficiency, dark rate, time resolution, long-term/T° stability, etc.
 - Search for the best working point
 - Comparison of performances
 - \rightarrow Work in progress
 - Radiation tests to start soon

FBK and Hamamatsu

hermostatic chamber

- Peter Križan (Ljubljana) reported on aging tests for , MaPMTs, and , MCP-PMTs
 - MaPMTs: compare performances of tubes from low and high irradiated regions
 - \rightarrow low irradiated tubes do not show degradated performances w.r.t. installation
 - \rightarrow high irradiated tubes to be tested soon
 - Ageing mecanism for MCP-PMTs: residual molecules ionized by secondary electrons
 - \rightarrow Photocathode degradation + lower amplification
 - \rightarrow Cure: to improve the vacuum
 - Irradiation by LED (rate ~ 1 MHz) started
 - \rightarrow expect to see ageing effects within a month

Hamamatsu from HERA-B

Photonis/Burle

FastSim

- Two classes of truth-based selectors (Orsay)
 → (mis)-ID decisions based on true particle type + hardcoded (mis)-ID probabilities
 - PacPidTruthBasedSelector: flat efficiencies
 - PacPidTableBasedSelector: momentum + polar dependences

BaBar-based tables (r24c Run 6)

http://mailman.fe.infn.it/superbwiki/index.php/FastSimDoc/PID_simulation#PacPid

- Next step is to produce 'real MC' selectors as sub-system input variables are now available (& reliable) or will soon be.
 - \rightarrow Scarse manpower; all commitments would be much appreciated
- fDIRC developments for barrel (Cinci.)
- TOF (Orsay) and aerogel (Nsk.) developments in progress

Current issues, next steps

- Many progresses since the Orsay meeting
- Main issues: manpower (too few people accumulating too much tasks) money (SuperB co-funding urgently needed for R&D activities)
- Short- and mid-term plans quite clear:

to make progresses on barrel (priority) and forward PID in parallel

- **Barrel PID: DIRC or fDIRC?** The latter design is currently favoured.
- Forward PID: TOF or aerogel? Mechanical integration? Performances?
 - \rightarrow Inputs to the DGWG for final decision by the collaboration
- Very hard to give reliable timetables

 \rightarrow progresses aren't smooth – more like patching what's the most urgent...