Considerations for APD readout of the LYSO Endcap

David Hitlin Perugia SuperB Workshop June 17, 2009

The Case for APD Readout of LYSO

> Pro

- > APD QE is a somewhat better match to LYSO scintillation spectrum
 - More pe/MeV = smaller statistical term in energy resolution (not dominant)
- Better S/N allows straightforward linearization of crystal response with a radioactive source
- Lowest noise way to achieve required gain can then attenuate to use same electronics as barrel CsI(Tl)

> Con

- Requires good temperature control
- > Somewhat more expensive, but negligible compared to crystal cost

Higher QE with LYSO spectrum

Can see radioactive source with full size crystal

PMT

APD

Channel Number

This is important for testing and setup for linear response

A protocol to achieve uniform response with trapezoidal crystals

An example: BABAR endcap crystals

Linearization protocol

- 1. Determine an acceptable variation of response with distance from readout end. This requires:
 - a) MC studies of effect of calorimeter energy resolution on appropriate physics quantities, e.g., π^0 mass resolution
 - b) Ray tracing studies of projective crystals, including spectrum information, i.e., emission/absorption spectra and QE spectral response
- 2. An automated, or semi-automated device to measure each crystal's response and adjust it to achieve the required uniformity
- 3. This is best done using a radioactive source, e.g. 60Co, 22Na or 137Cs
 - a) This cannot be done with a photodiode
 - b) It can be done with a PMT, but the corrections to convert to response of a PD are not simple
 - c) This can easily be done using an APD the same APD that will be matched with the individual crystal and used in the detector

APD's require stable temperature and HV

> This is very well understood and straightforward to achieve

> Example : ALICE calorimeter (Catania)

- Note that temperature control is also required for stable scintillation light output
 - (humidity control is required for the barrel as well)
 - $ho \Delta T=0.2$ ° $C \Rightarrow \Delta G = 0.5\%$, $\Delta LYSO = -0.04\%$

Csl(TI)

LSO

T C : 03+01%/°C

 $T. C.: -0.2 \pm 0.1 \% / ^{\circ}C$

20