SuperB Ring (about 1800m)

P19a

Effect of Reduced Boost on Time-Dependent Analysis in SuperB

Chih-hsiang Cheng Caltech SuperB General Meeting @ Perugia, 2009/06/18

Introduction

- It was recently proposed to reduce the asymmetry of the HER/LER energies from 7.0/4.0 GeV to 6.7/4.18 GeV, in order to reduce the storage ring size to fit to the potential site at LNF as an alternative to Tor Vergata site.
- The boost would be reduced from $\beta \gamma = 0.283$ to $\beta \gamma = 0.238$.
- We must study the loss of sensitivity to time-dependent analysis to understand the compromise.

Set up

- Study the S and C terms in time-dependent CP fit to $B^0 \rightarrow \phi K_S$ decays using the two beam energy configurations.
- Tool: fast simulation V0.0.9 + development up to ~June10.
- Mode: signal only; $B^0 \rightarrow \phi K_S$, $\phi \rightarrow K^+K^-$, $K_S \rightarrow \pi^+\pi^-$.
 - BF= 1.45×10^{-6} .
 - Generator at: $\sin 2\beta = 0.7033$, C=0, $\tau = 1.541$ ps, $\Delta m = 0.489$ ps⁻¹.
- Layer 0: Si hybrid pixels at R=1.455 cm, 200 μm thick, z_resolution= 10 μm.
- Beam spot $\sigma_x = 5.7 \ \mu m$, $\sigma_y = 35 \ nm$, $\sigma_z = 330 \ \mu m$.

SVT configuration

SVT layer geometry for baseline

Radiation length vs cos(theta) in FastSim

Total amount of L0 material is ~1.36% X₀ considering overlap of passive material. Relative amount of material for AI bus and support-cooling requires small adjustments.

Nicola Neri, Wednesday Parallel - Tracking (DGWG)

Event selection

- $\varphi \rightarrow K^+K^-$ from two GoodTracksLoose; $|m_{KK}-m_{\varphi}| < 20$ MeV.
 - No Particle ID
- $K_S \rightarrow \pi^+ \pi^-$ from two ChargedTracks; $|m_{\pi\pi}-m_{Ks}| < 25$ MeV; $P(\chi^2) > 0.001$.
- $B^0: 5.27 < m_{ES} < 5.29 \text{ GeV}; |\Delta E| < 50 \text{ MeV}.$
- Truth-matched: (use older χ^2 -based match)
- Reconstruction efficiency:
 - $\beta \gamma = 0.283 : \epsilon = 65.22\%$
 - $\beta \gamma = 0.238 : \epsilon = 65.39\%$

Vertexing and tagging

- Tag-vertex is determined by standard BaBar algorithm.
- Reco-vertex and tag-vertex are fed to a TreeFitter to fit an $(Y(4S) \rightarrow BB)$ candidate with the Beam constraint.
 - $\Delta t = t_{CP} t_{tag}$.
- Flavor tagging is not validated yet due to PID. So here I will use the true tag flavor.
 - ▹ In BaBar, Q~33%, so each event here has ~3x stat. power.
 - The potential correlation between flavor tagging and boost is ignored.

 t_{CP} and t_{tag} have large uncertainties because the large error in Y(4S) vertex. But they are positively correlated and error due to Y(4S) vertex is canceled in Δt .

Δt and its uncertainty

•
$$|\Delta t| < 20 \text{ ps}; 0.1 < \sigma(\Delta t) < 2.5 \text{ ps}$$

- $\beta \gamma = 0.283 : \epsilon = 63.10\%$
- $\beta \gamma = 0.238 : \epsilon = 62.33\%$

CP fit

- Δt resolution function: standard BaBar triple Gaussian.
 - core, tail Gaussians: bias and width scaled by per-event error.
 - tail Gaussian width scale factor fixed at 3.
 - outlier Gaussian fixed at b=0 ps, $\sigma=8$ ps.
 - 5 free parameters (plus S and C, total of 7 free parameters).
 - No splitting by tagging category because we don't have it.
- First fit to a sample generated with 2M events to obtain resolution function.
- Then fit to 400 samples each generated with 20000 events with resolution fixed from the large sample fit.

2M-event fits

9

βγ	0.283	0.238		
S	0.70414 ± 0.00175	0.70325 ± 0.00187		
С	-0.00105 ± 0.00122	-0.00289 ± 0.00125		
b_core	-0.1158 ± 0.0038	-0.0929 ± 0.0034		
b_tail	-0.8376 ± 0.0241	-0.7653 ± 0.0204		
f_out	0.0078 ± 0.0004	0.0100 ± 0.0002		
f_tail	0.1773 ± 0.0027	0.1779 ± 0.0023		
s_core	1.1230 ± 0.0056	1.1314 ± 0.0049		

- Resolution function is not perfect, but does not cause bias in uncertainty comparison.
- Error on S changes by <u>+6.9%</u>.

It does not change the result if we relax $\sigma(\Delta t)$ cut in reduced boost so that #events in the fit are the same.

Fits to samples of 20k (generated)

- 400 samples, each has ~12.5k events in the fit (fix resolution).
 - This has roughly the same statistical power of 75 ab⁻¹ for this particular mode after (tighter) reconstruction efficiency and flavor tagging for real data are taken into account.

βγ	0.283	0.238	ratio	l/ratio	ratio^2
S mean	0.70231 ± 0.00081	0.70335 ± 0.00089			
S RMS	0.01627 ± 0.00058	0.01779 ± 0.00063	0.915	1.093	0.836
σ S mean	0.01628 ± 0.00001	0.01742 ± 0.00001	0.935	I.070	0.873

Conclusions

 Using B⁰→φK_S, φ→K⁺K⁻, K_S→π⁺π⁻ and fast simulation in SuperB under two beam energy configurations (7/4 vs. 6.7/4.18) assuming layer 0 at R=1.455 cm and 10 µm z resolution, we find that reducing the boost is equivalent to losing ~15% of data in terms of the S measurement in a typical time-dependent analysis.