

# THE BUILTING

**G. Eigen, U. Bergen** 



#### Outline

- New Design
- Estimates on precision of position measurements
- Cost estimate
- R&D in Bergen
- Conclusion and next steps





#### Introduction

- The backward endcap calorimeter is a 12 X<sub>0</sub> Pb-scintillator sampling calorimeter
- The original design for the backward endcap calorimeter consisted of tiles yielding 11520 readout channel
- Since on average only 1-2 particles are expected in the backward EC the segmentation can be substantially reduced
- Instead of using tiles we can use strips
- Dave Hitlin suggested to use spiral-shaped strips
- The new design is based on 3 different shapes of strips:
  - Right-handed spiral strips
  - Left-handed spiral strips
  - Sector strips
- The 3 layers will alternate 8 times





# SuperB: Baseline Design







#### Scintillator Planes

- Alternate 3 different strip shapes 8 times → 24 layers in total
- There are 48 strips per layer yielding 1152 strips
- Due to the different strip shapes each layer needs to be assembled completely → no split into halves is possible
  - > need to remove beam pipe if calorimeter has to be taken out



## Strip Fabrication

- For practical reasons it is best not to produce individual strips but to start out with a rectangular scintillator sheet
- First cut outer and inner spiral edges as well as inner and outer circular edges
- Next we mill 5 grooves along the spiral lines to produce 6 strips
- We leave small bridges uncut so that the
   6 strips are connected in a few places
  - → we need to measure the cross talk to decide size of the bridges
- Gaps are filled with white diffuse reflector
- This procedure provides mechanical stability for each sheet



8 such sheets make one layer



## Strip Readout

- The scintillator strips are 3 mm thick
- At the outer edge the strips are 9.8 cm wide, at the inner edge 4.1 cm
- In the center a 1mm deep spiral-shaped groove is cut into which the WLS fiber is inserted
- A SiPM (MPPC) is mounted at the outer edge
- A mirror is positioned at the inner edge of the fiber
- Thin boards with traces are placed on the outer edge to which the SiPM pins are soldered to





# Position Determination from Spiral Planes

The overlay of left-handed and right-handed spirals project out a tile structure, in radial direction we get 5 tiles

 $\rightarrow$   $\Delta r \sim 10$  cm for 4 tiles &  $\Delta r \sim 4$  cm for outermost tile

- In the worst case the resolution is  $\sigma_r \sim \sigma_{\phi} \sim 2.9$  cm (outer region)
- In the best case the resolution is  $\sigma_{o}$ ~1.2cm (inner region)







#### Position Determination from all 3 Planes

 $\bullet$  Adding sector strips improves  $\sigma_{\phi}$  by factor of 2 around sector boundaries

- For separating two tracks only  $\sigma_{\phi}$  is relevant
- Since sector strips can be cut out from a smaller rectangular sheet than spiral strips, save scintillator material







#### First Cost Estimate

- Scintillator material: 10<sup>5</sup> cm<sup>3</sup>→89 Kg, eg Eljen EJ200 sheets: 12"x12"x3mm, \$176.5/sheet, larger sheets 75x150 cm<sup>2</sup> 968\$/sheet for 5mm thickness
   → 100k\$
- Labor: 800 h for cutting sides and grooves
   → 80k\$
- ⇒ Pb sheet:  $10^5$  cm<sup>3</sup>,  $\rightarrow 1120$  Kg, 20\$/Kg→ 100 sheets, size  $75\times150$  cm<sup>2</sup>  $\rightarrow 1720$  Kg
- MPPCs: 1152 detectors, 100 €/MPPC →50 €?
  → 80k\$
- Fiber: 63 m, 1 mm Y11 fiber, 1-2 spools
  → 1k\$
- Frontend electronics: LAL Spiroc chip? 1 LED/strip plus driver
   100\$/channel
   → 115k\$
- Support structure, Al-carbon fiber?
  → 100k\$
  - Total

    →~510k\$

# R&D in Bergen

- We have started to measure properties of SiPMs, MPPCs and MAPDs in our laboratory
- We have started to measure LED and source spectra from scintillator tiles







## MPPC Signals

- We have detectors from 4 different manufacturers, tests were done on MPPCs (1x1 mm²,3x3 mm²), SiPMs, MAPDs,
- The 1x1 mm<sup>2</sup> MPPC has a faster response than the 3x3mm<sup>2</sup> MPPC (2 ns vs 2.7 ns)



(a) MPPC 10362-33-050C, sample 341. X- (b) MPPC 10362-11-025C, sample 741. X-axis: axis: 10 ns, Y-axis: 1 mV 4 ns, Y-axis: 1 mV



# MPPC Single Photoelectron Spectra

For 1x1 mm<sup>2</sup> MPPCs photoelectron peaks are narrower than those for 3x3 mm<sup>2</sup> MPPCs due to lower noise (smaller capacitance)









#### Noise Studies of Setup

For recommended operating voltage noise of 1x1 mm<sup>2</sup> MPPC is 4 ADC bins

ADC



ுக்குள் இழி

ADC +preamp

Mean: -0.11 RMS: 15.34 RMS: 15.3 200000 18/80 The de sec on the de de de de sec on t is de sec on (b) The ADC with the preampliber connected

ADC +preamp +MPPC







14

hasyan can be a

# Gain vs Voltage in MPPCs

Gain of MPPCs depends linearly on voltage, it is lower than that of

SiPMs

$$G = \frac{\mathsf{Peak}_{\mathsf{1pe}} - \mathsf{Pedestal}}{G_{\mathsf{preamp}}}$$





## Gain vs Temperature

MPPC gain drops linearly with temperature



1/G\*dG/dT=-3.81%/1°C

1/G\*dG/dT=-2.2%/1°C



#### Dark Rate

- Dark rate increases with bias voltage, for 1x1 mm² detectors the slope is much flatter than that for 3x3 mm² detectors
- Dark rate drops with increasing threshold, typically cut at 0.5 MIPs for data taking, no cut for gain calibration









## Some Properties of MPPCs

- Breakdown voltage is similar for 1x1 mm² and 3x3 mm² MPPCs ~70V
- Capacitance of 1x1 mm<sup>2</sup> MPPCs is 4 times lower than that of 3x3 mm<sup>2</sup>
- Temperature and voltage dependence is lower for 1x1 mm<sup>2</sup> MPPCs

| Photodetector       | $C_{pixel}[fF]$    | $V_{breakdown}$    | %G/0.1V | $\%G/1^{o}C$ |
|---------------------|--------------------|--------------------|---------|--------------|
| MPPC S10362-33-050C |                    |                    |         |              |
| Sample333           | $98.5{\pm}1.7$     | $69.83 {\pm} 1.70$ | 7.07    |              |
| Sample334           | $92.4{\pm}1.2$     | $69.82{\pm}1.29$   | 6.79    | -3.77        |
| Sample335           | $97.4 \pm 1.9$     | $69.83 {\pm} 1.91$ | 7.06    | -3.87        |
| Sample336           | $96.3 {\pm} 0.5$   | $69.76 \pm 0.48$   | 6.86    |              |
| Sample338           | $97.1 {\pm} 1.4$   | $69.96 \pm 1.48$   | 7.14    |              |
| Sample341           | $96.3 \pm 1.4$     | $69.88 {\pm} 1.47$ | 7.17    | -3.81        |
| MPPC S10362-11-025C |                    |                    |         |              |
| Sample738           | $22.29{\pm}0.15$   | $68.31 {\pm} 0.65$ | 4.35    |              |
| Sample739           | $23.97{\pm}0.15$   | $69.13 \pm 0.60$   | 4.47    |              |
| Sample740           | $21.73 {\pm} 0.30$ | $68.28 {\pm} 1.34$ | 4.24    |              |
| Sample741           | $26.09 \pm 0.19$   | $68.58 {\pm} 0.71$ | 4.68    | -2.19        |
| Sample742           | $21.63 \pm 0.19$   | $69.00 \pm 0.86$   | 4.27    | -2.21        |





## R&D in Bergen

 We have started gain and MIP measurements of scintillators using SiPMs









# Scintillator Spectra

• Operate SiPM with gain SiPM ~4×105

Measure spectrum with 90Sr source and light pulser





#### Cross Talk Measurement

- Machine two tapered strips that are separated by cuts
- Start with ~50% bridges and measure cross talk
- Remove bridges down to 1-2% in steps to establish a relation of cross talk vs size of bridges
- Redo study for full size
- Repeat measurement for spiral strips for chosen bridge size





#### Conclusion

- The new design reduces the number of channels to 1152
- With the spiral design (sectors overlap 7 left-handed and 7 right-handed spirals) the position of the shower is determined rather precisely, effectively get 5 tiles in radial direction
   → effectively get more tiles, since tracks are curved
- Resolution in  $\phi$  should be better than that in r,  $\phi$  resolution is relevant for separating nearby tracks
- In this design the entire calorimeter is built in one piece
  - → it cannot be removed without removing the beam pipe
- In Bergen, we have the equipment to perform R&D



#### Next Steps

- Measure cross talk of two neighboring tiles, tapered shape Look at uniformity
- Measure cross talk of two neighboring tiles, spiral shape
- Study calibration and monitoring with LED
- Design support structure
- Perform MC simulations
- Compare Pb vs W, (mechanical stability)
- Design prototype

