

B_{reco} studies in FastSim: status report

Elisa Manoni

Università di Perugia and INFN Sez. Perugia

Francesco Renga

Università Roma "La Sapienza" and INFN Sez. Roma

SuperB meeting, Physics + Computing session July 17, 2009

Outline

* Code:

- Implementation of dedicated packages for B_{reco} reconstruction in FastSim
- some pending problems:

HAD: creating and accessing skim UsrData, efficiency loss between V3 and V9

SL: unexpected gain in efficiency in V9 wrt BaBar FullSim (and previous FastSim versions)

* Physics:

- BR sensitivity
- angular analysis

SuperB meeting

June 17, 2009

Code

elisa manoni

S

B_{reco} in FastSim

Reconstruction of SL and HAD B_{reco} modes implemented in FastSim

$$B \rightarrow D l \nu X \qquad \left(X = \gamma, \pi \right)$$

$$D^{0} \rightarrow K^{-} \pi^{+} \qquad D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$$

$$D^{0} \rightarrow K^{-} \pi^{+} \pi^{0} (\gamma \gamma) \qquad D^{*+} \rightarrow D^{0} \pi^{+}$$

$$D^{0} \rightarrow K^{-} \pi^{+} \pi^{0} (\gamma \gamma) \qquad D^{*+} \rightarrow D^{0} \gamma$$

our AIM: Provide two packages to perform recoil analysis in semileptonic and hadronic $B_{\rm reco}$ samples

Skim emulation

Two tcl's inspired to FilterTools code

- BToDlnuSequence.tcl → FilterTools/BToDlnuPath.tcl
- BSemiExclSequence.tcl → FilterTools/BSemiExclPath.tcl

- * Main changes wrt BaBar code:
 - need to include by hand CompositionSequences and SimpleComposition sequences to remove PID requirements in some standard lists not supported in FastSim
- * As the BaBar skims, select SL and HAD B_{reco} samples using proper hadron and lepton lists (without dumping collections)

PacSemiLepRecoilUser and PacSemiExclRecoilUser

- * Implemented two packages inspired to BaBar code
 - PacSemiLepRecoilUser → BTauNuSemiLepUser
 - PacSemiExclRecoilUser → BTauNuSemiExclUser
- * They contain:
 - main analysis tel on which run the executable
 - tcl for skim emulation
 - tcl for PID selection: Truth-based PID currently used, three different lists for barrel, fw and bw to make PID studies
 - tcl and .cc / .hh for signal and tag side reconstruction and selection
 - tcl for BtaTupleMaker settings
 - README

Known Problems

- UsrData problem: not able to create and access UsrData implemented at skim level
 - ~ can not make mode-by-mode studies
 - ~ can not apply a mode-based selection on ΔE
- B_{reco} reconstruction efficiency loss: starting from frozen FastSim V3, -60% in B_{reco} reconstruction efficiency wrt previous FastSim versions and FullSim

- * SL Recoil, PacSemiLepUser
 - efficiency "gain": starting from FastSim V4 the B_{reco}
 reconstruction efficiency is +25-30% wrt BaBar Full simulation

HAD: UsrData problem

need to access a UsrData created at skim-level in BaBar which contains important info on $B_{\rm reco}$ (i.e decayMode, purity,....)

* Not feasible due to incompatibility between BetaMiniSequence and FastSim

* Trying to fix this (thanks Dave!) → the problem may be related to some lower level code issue....

HAD: Breco reconstruction efficiency loss (I)

Results presented at Warwick:

- quite good agreement between FastSim and FullSim efficiencies (discrepancy due to difficulties in reproducing BaBar UsrData problem)
- using FastSim V3 (NOT THE FROZEN VERSION) →V3'

	FastSim	FullSim		FastSim
neutral B _{reco}	4.46 x 10 ⁻³	3.3 x 10 ⁻³		4.89 x 10 ⁻³
charged B _{reco}	4.29 x10 ⁻³	4.5 x 10 ⁻³		4.86 x 10 ⁻³
BaBar config / SuperB confi				

* since FastSim V3 (FROZEN VERSION) : ~60% drop in Breco reconstr. eff.

(same in V4 and V9)

	FastSim	FastSim
neutral B _{reco}	1.87x10 ⁻³	2.16x 10 ⁻³
charged B_{reco}	1.97x10 ⁻³	2.33x 10 ⁻³

BaBar config SuperB config

HAD: Breco reconstruction efficiency loss (II)

In FastSim V9:

- * generated 10^9 events both for neutral and charged B_{reco}
- * signal side reconstruction in $B_{sig} \rightarrow K^* \nu \nu$
 - selection efficiency:

0 events with $K^{*0} \rightarrow K^{+}\pi^{-}$ (in FullSim: $\varepsilon = 3.52 \times 10^{-4}$)

0 events with $K^{*+} \rightarrow K^{+} \pi^{0}$ (in FullSim: $\varepsilon = 2.02 \times 10^{-4}$)

 $K^{*+} \rightarrow K_s \pi^+ \epsilon = 7.03 \times 10^{-6}$ (in FullSim: $\epsilon = 2.04 \times 10^{-4}$)

- * Tests on $\mathbf{B}^0 \to \mathbf{D}^* \cdot \mathbf{K}^+$, $\mathbf{D}^* \to \mathbf{D}^0 \pi$, $\mathbf{D}^0 \to \mathbf{K}^- \pi^+$:
 - one of the Breco mode
 - consistency between FastSim V3' and FastSim V9
- * Proposed tests:
 - update the PID selector: from truth-based to table-based
 - check length of particle lists
 - make B_{reco} mode-by-mode study (when UsrData will work)

SL: efficiency "gain" (I)

all the numbers in BaBar config

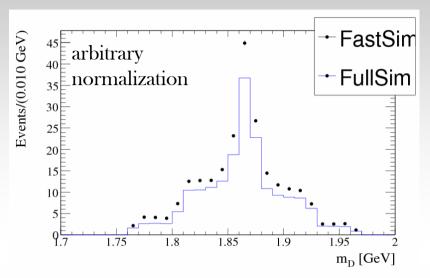
Results presented at Warwick: good agreement between Fast and Full Simulation (BaBar config)

	FastSim	FullSim
neutral $\mathbf{B}_{\mathrm{reco}}$	19.3 x 10 ⁻³	20.0 x 10 ⁻³
charged B_{reco}	19.4 x10 ⁻³	19.3 x 10 ⁻³

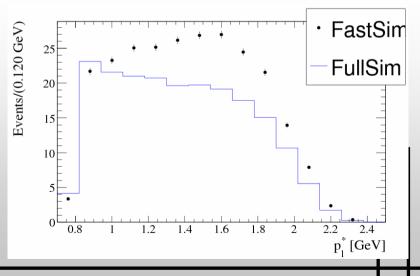
- also $B \rightarrow K^* \nu \nu$ signal selection efficiency increase wrt full Sim:
 - $+40\% \text{ K}^{*0} \text{VV}$
 - +50% K*+vv

	FastSim
neutral $\mathbf{B}_{\mathrm{reco}}$	24.9 x 10 ⁻³
charged B _{reco}	25.6 x10 ⁻³

unexpected gain in B_{reco} reconstruction efficiency when moving to FastSim V4 and **V**9



SL: efficiency "gain" (II)



Plots for two tag side variables, no selection on the signal side applied:

* D mass: apart from normalization, good agreement in the shape between fast and full

* lepton spectrum: big discrepancy both in shape and in normalization; shape similar to what obtained when applying a selection in the signal side

SuperB meeting June 17, 2009

Physics

elisa manoni

Startegy for SuperB sensitivity estimate

compare BaBar and SuperB beam and detector configurations

Super-B configuration: $\beta \gamma = 0.28$, no FWD/BWD PID devices, no BWD calorimeter

- * Analysis starting point
 - BaBar efficiencies & Backgrounds
 - BaBar analysis technique....

Signal extraction:

- SL: fit to Eextra distribution
- HAD: fit to Neurat Network output

* Systematic uncertainties

BaBar:

- large systematics on signal yield N_s from PDF modeling in the fit $(\sigma_{syst} \sim \sigma_{stat})$;
- systematics largely dominated by MC statistics;
- Syst. error expected to go down with:

1/sqrt(MC stat) ~ 1/sqrt(Luminosity)

SuperB:

- assume a syst. error equal to the stat. error;

Results

Comparison between BaBar and SuperB as presented at Warwick

- SL: 25% improvement in S/sqrt(B) for neutral B; 35% improvement in S/sqrt(B) for charged B;

- HAD: 10% improvement in S/sqrt(B) for neutral B; 20% improvement in S/sqrt(B) for charged B;

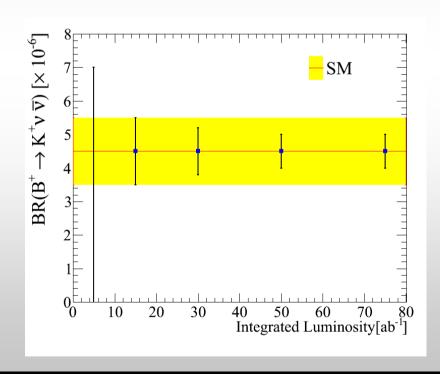
* Updates in FastSim_V9

- SL: background reduction same as showed in Warwick smaller gain in signal efficiency (BaBar vs SuperB) affected by fast-sim vs full-sim inconsistency

 $B^0 \rightarrow K^{*0} \nu \nu$ as in Warwick: S +14% B - 10%

now : S + 5% e B - 11%

- HAD: meaningless efficiency estimate in fastsim_V9


BR Expected sensitivity

Toy MC (fit to Eextra in SL - fit to a NN in HAD);

- PDF parameters from BaBar full simulation;
- * Improvements from FastSim (as presented at Warwick).

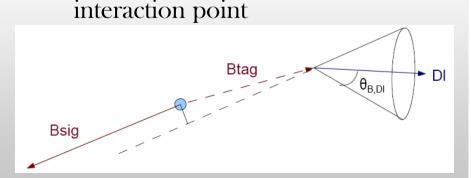
Preliminary

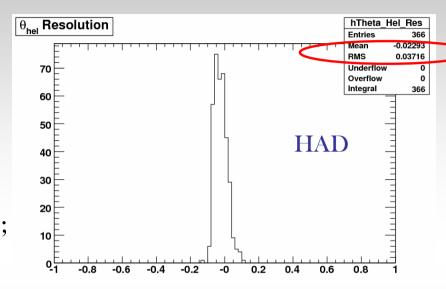
Angular Analysis: motivation

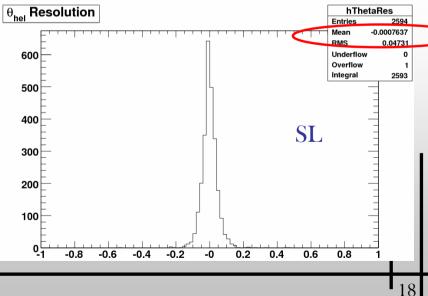
* Good sensitivity to NP through angular distribution:

 θ = angle between K^* direction in B rest frame and K direction in K^* rest frame F_{I} = fraction of longitudinally polarized K^*

$$\frac{d\Gamma}{d\cos\theta} \propto \frac{3}{4}(1 - \langle F_L \rangle)\sin^2\theta + \frac{3}{2}\langle F_L \rangle\cos^2\theta$$


- * Experimentally, simultaneous extraction of BR and F_L with a 2D fit $(E_{\text{extra}} \text{ or NN vs. } \cos\theta)$
 - Knowledge of B rest frame needed: problems in SL recoil analysis where kinematics is not close
 - HAD alone could be not enough for observing the decay.

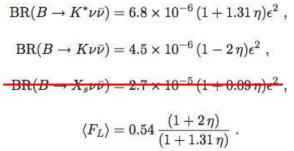


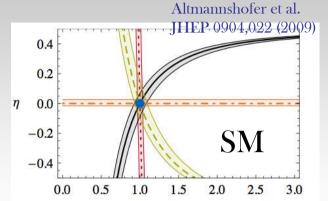

$\theta_{\rm hel}$ reconstruction

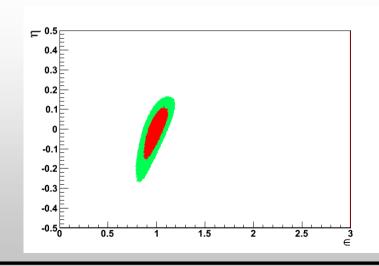
* HAD: closed kinematics allow to compute the K* helicity angle

* SL: kinematics is not close due to v strategy: use the Dl pair direction to determine $\cos_{B,Dl}$ and define a cone; chose as Bsig direction the one, inside the cone, which minimize the distance from the

elisa manoni




Analysis strategy and Constraints


Preliminary study:

- * Toy MC
- * Neutral channel only

- * No $\cos\theta$ resolution effects
- * Background flat in $\cos \theta$
- * No systematics
- * 75 ab⁻¹

- Toy results:
- BR(B \to K*0 $\nu\nu$)_{HAD} = (6.8 ± 3) x 10⁻⁶

 $\epsilon = \frac{\sqrt{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}}{|(C_L^{\nu})^{SM}|} \quad \eta = \frac{-\text{Re}\left(C_L^{\nu}C_R^{\nu*}\right)}{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}$

- BR(B \rightarrow K*0 $\nu\nu$)_{SL} = (6.8 ± 3) x 10-6
- $F_{L,HAD} = 0.54 \pm 0.27$
- $F_{L,SL} = 0.54 \pm 0.24$
- correlations BR-F_L

HAD: -0.36

SL: -0.25

Conclusion

- FastSim Packages for SL and HAD B_{reco} reconstruction set up and almost ready to be committed
 - some pending issue related both to the code (UsrData) and Simulation/Reconstruction (efficiency)
 - PID studies can help on fixing the efficiency problems
- * Physics studies
 - angular analysis feasible also in the SL recoil
 - BR sensitivity estimates not updated to V9 results due to efficiency inconsistency
 - Using updated SM predictions, taking into account dominant systematics and considering the results in FastSim_V3', $B \rightarrow K^*\nu\nu$ is expected to be observed with about 50 ab⁻¹

SuperB meeting June 17, 2009

Back-up slides

21

elisa manoni

Skim emulation

Changes in some CompositionSequences and SimpleComposition sequences to remove PID requirements in some standard lists not supported in FastSim.

SL: CompositionSequences/CompBToDlnuProdSequence.tcl
CompositionSequences/CompBToDlnuSequence.cc
CompositionSequences/CompBToDlnuSequence.tcl
CompositionSequences/CompPi0Sequence.cc
CompositionSequences/CompPi0Sequence.tcl
SimpleComposition/SmpCharmlessProdSequence.tcl

SimpleComposition/SmpDcProdSequence.tcl