

Super-B: CSR effects.

Sasha Novokhatskí

SLAC National Accelerator Laboratory

Super-B General Meeting VIII

June 16-20, 2009

Perugia, Hotel Gio'

CSR

- Do really CSR-Coherent Synchrotron Radiation have a heavy impact on the design parameters of Super-B?
 - Did we miss CSR at B-factories?
- Problem consists of two parts:
 - Appropriate calculation of the CSR fields.
 - Beam dynamics simulation based on the CSR field presentation.

CSR loss factor of a bunch passing a bend in free space

On the coherent radiation of an electron bunch moving in an arc of a circle

E.L. Saldina, E.A. Schneidmillera, M.V. Yurkovb,*

*Automatic Systems Corporation, 443050 Samara, Russia
b Joint Institute for Nuclear Research, Dubna, 141980 Moscow Region, Russia

Received 1 November 1996; received in revised form 13 May 1997

Bending radius ρ , magnet length l_m and r.m.s. bunch length σ define the loss energy of a bunch

$$\sigma \gg \frac{\rho}{\gamma^3}$$
 (for $E=3$ GeV $\gamma=6 \times 10^4$)

$$K_{CSR} = \frac{Z_0 c}{4\pi} \frac{l_m}{(4\rho\sigma^2)^{2/3}}$$

LONGITUDINAL WAKEFIELD FOR AN ELECTRON MOVING ON A CIRCULAR ORBIT

J.B. MURPHY a.*, S. KRINSKY and R.L. GLUCKSTERN b

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA; ^b Physics Department, University of Maryland, College Park, MD 20742, USA

(Received 6 May 1996; Revised 28 January 1997; In final form 10 March 1997)

$$\sigma \ll \frac{
ho}{\gamma^3}$$

$$K_{SR} = \frac{Z_0 c}{6\pi \rho^2} l_m \gamma^4$$

RF power is needed to compensate:

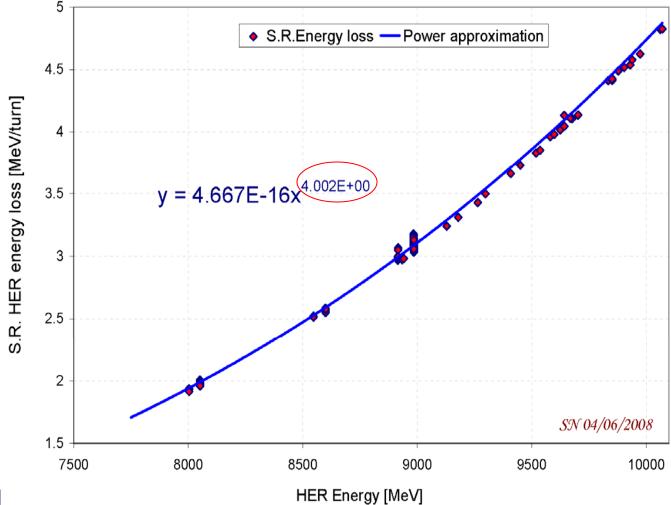
1) Beam incoherent and coherent synchrotron radiation losses

$$U_{turn} = \frac{Z_0 c}{\rho} \left(\frac{e}{3} \left(\frac{E}{m_0 c^2} \right)^4 + \frac{Q}{2} \left(\frac{\rho}{2\sigma} \right)^{4/3} \right)$$

$$P_{s.r.} = U_{turn} \times I$$

Beam energy E, bending radius ρ , beam current I, electronic charge e, bunch charge Q, bunch length σ , rest mass of electron m_0 , free space impedance Z_0 and speed of light c.

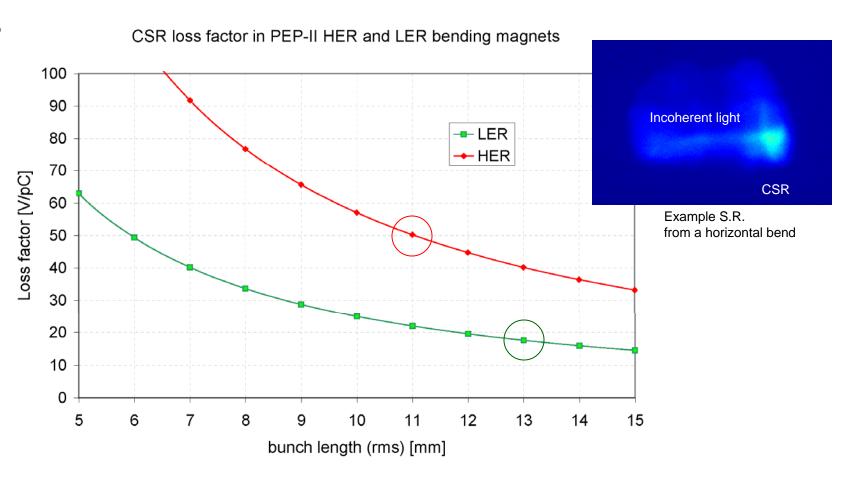
Energy loss per turn for coherent synchrotron radiation (CSR) increases with the bending radius as $\rho^{1/3}$



Main power loss comes from incoherent radiation Example from PEP-II

Sasha Novokhatskį "CSR Effects"

Measurement at PEP-II HER during energy scan


5

CSR losses in PEP-II (according to formulas without chamber shielding)

Numbers are relatively large in comparison with geometrical wake fields. More studies are needed to include shielding of the beam chamber walls.

Infinite parallel plates

PHYSICAL REVIEW

VOLUME 96, NUMBER 1

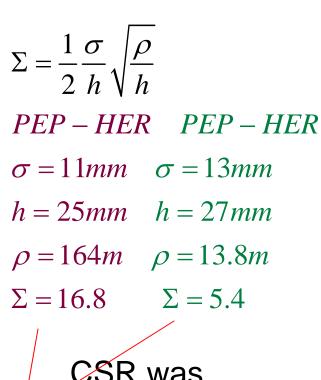
OCTOBER 1, 1954

Suppression of Coherent Radiation by Electrons in a Synchrotron*

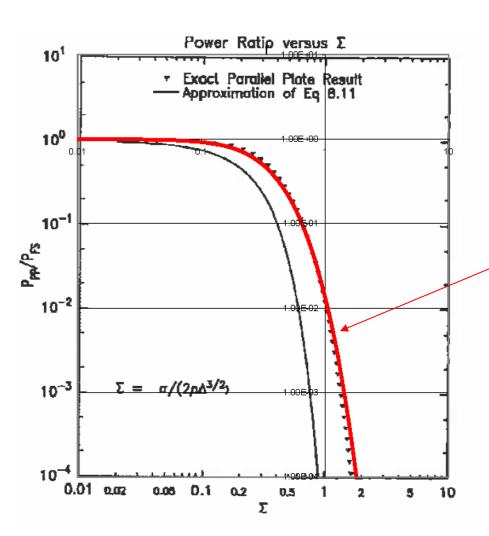
JOHN S. NODVICK† AND DAVID S. SAXON University of California, Los Angeles, California (Received May 25, 1954)

$$K_{pp}(\rho, h, \sigma) = \frac{2}{3} \frac{Z_0 c}{\pi \rho} \times \frac{\rho}{h} \sum_{n=1}^{\infty} \left(\frac{\sin n \sqrt{3} \frac{\sigma}{\rho}}{n \sqrt{3} \frac{\sigma}{\rho}} \right)^2 \times \sum_{j=1,3,...}^{\gamma_j < n} \frac{\gamma_j^4}{n^3} \times \left[K_{1/3}^2 \left(\frac{\gamma_j^3}{3n^2} \right) + K_{2/3}^2 \left(\frac{\gamma_j^3}{3n^2} \right) \right]$$

$$\gamma_j = j\pi \frac{\rho}{h}$$



Shielding from parallel plates


CSR was strongly shielded in PEP-II

Shielding from parallel plates. Approximation.

$$\tilde{\Sigma} = 2\sqrt{12} \times \Sigma = \frac{\sqrt{12}\sigma}{h} \sqrt{\frac{\rho}{h}}$$

$$P_{nn} \qquad \tilde{\Sigma}$$

$$\frac{pp}{P_{FS}} = \frac{2}{\sinh(\tilde{\Sigma})}$$

hyperbolic sine

Loss factor (per one turn) due to CSR

$$K_{CSR} \approx \frac{Z_0 c}{2\rho} \left(\frac{\rho}{2\sigma}\right)^{4/3} \times \frac{\tilde{\Sigma}}{\sinh(\tilde{\Sigma})}$$

$$\tilde{\Sigma} = \frac{\sqrt{12}\sigma}{h} \sqrt{\frac{\rho}{h}}$$

Other approaches

- Frequency domain
- Several assumptions
- Simplified equations

T.Agoh & K.Yokoya. Equation of Evolution

Assuming that s-dependence of the field is weak, neglect the term of 2nd derivative with respect to s:

$$\frac{\partial^2 \mathbf{E}_{\perp}}{\partial s^2} \ll 2ik \frac{\partial \mathbf{E}_{\perp}}{\partial s}$$

Equation to describe CSR

$$rac{\partial m{E}_{\perp}}{\partial s} = rac{i}{2k} \left[\left(m{
abla}_{\!\perp}^2 + rac{2k^2x}{
ho}
ight) m{E}_{\!\perp} - \mu_0 m{
abla}_{\!\perp} J_0
ight]$$

- First derivative with respect to s
 Field evolution (transient behavior) along the beam line
 We can solve it numerically step by step with respect to s.
- Ex and Ey are decoupled.

K.Oide approach

Sasha Novokhatski "CSR Effects"

 \bigstar Ignore $\frac{\partial^2 E}{\partial \phi^2}$ terms (AgoH-YokoYA)

THEN WE OBTAIN FIRST ORDER DIFFERENTIAL EQUATIONS FOR $\overline{E}_{r,\phi}$.

$$\begin{split} \frac{\partial \overline{E}_r}{\partial \phi} &= \frac{i}{2(k^2R^2-1)} \left[kR \left(\left(k^2(r^2-R^2) + 1 \right) \left(\overline{E}_r + \overline{E}_{r0} \right) + r \frac{\partial}{\partial r} \left(\overline{E}_r + \overline{E}_{r0} \right) + r^2 \left(\frac{\partial^2 \overline{E}_r}{\partial r^2} + \frac{\partial^2 \overline{E}_r}{\partial y^2} \right) \right) \\ &+ \left(k^2(r^2+R^2) - 1 \right) \overline{E}_\phi + r \frac{\partial \overline{E}_\phi}{\partial r} + r^2 \left(\frac{\partial^2 \overline{E}_\phi}{\partial r^2} + \frac{\partial^2 \overline{E}_\phi}{\partial y^2} \right) \right] \\ \frac{\partial \overline{E}_\phi}{\partial \phi} &= \frac{i}{2(k^2R^2-1)} \left[kR \left(\left(k^2(r^2-R^2) + 1 \right) \overline{E}_\phi + r \frac{\partial \overline{E}_\phi}{\partial r} + r^2 \left(\frac{\partial^2 \overline{E}_\phi}{\partial r^2} + \frac{\partial^2 \overline{E}_\phi}{\partial y^2} \right) \right) \right. \\ &+ \left. \left(k^2(r^2+R^2) - 1 \right) \left(\overline{E}_r + \overline{E}_{r0} \right) + r \frac{\partial}{\partial r} \left(\overline{E}_r + \overline{E}_{r0} \right) + r^2 \left(\frac{\partial^2 \overline{E}_r}{\partial r^2} + \frac{\partial^2 \overline{E}_r}{\partial y^2} \right) \right] \end{split}$$

* Further Approximation is possible as Agoh-Yokoya did, but not done here.

CSR in SuperKEKB

Sasha Novokhatski "CSR Effects"

	KEKB LER	SuperKEKB LER
Bunch length	6 mm	3 mm
Bunch current (charge)	1.4 mA (~14 nC)	1.9 mA (~19 nC)

We will keep using present magnets to save money and R&D time.

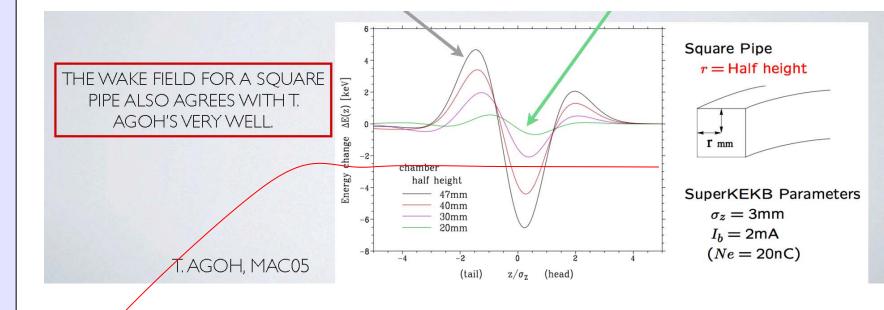
Bending radius

LER (positron): R=16.31m

HER (electron): R=104.5m

BELLE DITECTOR HER KEKB B-Factory

Positron bunch will be affected with CSR.



From K.Oide presentation at 14th KEKB-ARC

Sasha Novokhatski "CSR Effects"

Energy change due to CSR (Longitudinal wakefield for a single bend)

Approximation formula gives 2.4 kV/magnet (150 magnets)

Comparison and Summary

- Good agreement for large CRS effect
- Not so good agreement for stronger shielding
- PEP-II and Super-B factory have smaller size of the vacuum chamber.
- The CSR effect is almost dammed for Super-B.
- However more analyses are needed.

What to do next

- Choose an algorithm for more careful analyses of CSR.
- There are several possibilities.
- Use existing codes. (Argone, DESY, KEK) to calculate the CSR wake potential
- Or write a new code, which can be used also for other applications (for example LCLS)