WG-A: Phenomenology

- Our task: discussing SuperB physics goal in terms of new physics signals search
- Currently we are exploring the following models:

```
(A)MSSM
```

- (B) SUSY-GUTs (together with MSSM, could be simply SUSY)
- (C)Little Higgs model (LHT)
- (D)Extra-Dimension model
- (E) CKM analysis
- (F) Model independent/Effective theory approach

* new since CDR

WG-A: Phenomenology

 Our task: discussing SuperB physics goal in terms of new physics signals search

Currently we are exploring to Susy: Shimizu, Jager, Nardecchia
 (A)MSSM
 (B) SUSY-GUTs (together with MSSM, could be simply SUSY)
 (C)Little Higgs model (LHT)
 (D)Extra-Dimension model
 (E) CKM analysis
 (E) CKM analysis
 (F) Model independent/Effective theory approach
 Model Indep:: Bona, (non)MFV: Zupan, Vives

New activity I: Benchmark

- SUSY Benchmark point for flavour (started in Valencia meeting):
 - (i) The SPS (snowmass point and slope) are useful to see a correlation between collider (high PT) and flavour experiments.
 - (ii) But current points are not necessarily favorable for flavour.
 - (iii) Furthermore, some of the points look already been excluded by e.g. $B \to X_s \gamma$ or new g-2.

```
SPS1a: m_0 = 100 \text{GeV}, \quad m_{1/2} = 250 \text{GeV}, \quad (7)

A_0 = -100 \text{GeV}, \quad \tan \beta = 10, \quad \mu > 0

SPS4: m_0 = 400 \text{GeV}, \quad m_{1/2} = 300 \text{GeV},

A_0 = 0, \quad \tan \beta = 50, \quad \mu > 0,

SPS5: m_0 = 150 \text{GeV}, \quad m_{1/2} = 300 \text{GeV},

A_0 = -1000, \quad \tan \beta = 5, \quad \mu > 0.
```

	SPS1a	SPS4	SPS5
$\mathcal{R}(B \to X_s \gamma)$	0.919 ± 0.038	0.248	0.848 ± 0.081
$\mathcal{R}(B o au u)$	0.968 ± 0.007	0.436	0.997 ± 0.003
$\mathcal{R}(B \to X_s l^+ l^-)$	0.916 ± 0.004	0.917	0.995 ± 0.002
$\mathcal{R}(B \to K \nu \overline{\nu})$	0.967 ± 0.001	0.972	0.994 ± 0.007
$\mathcal{B}(B_d \to \mu^+ \mu^-)/10^{-10}$	1.631 ± 0.038	16.9	1.979 ± 0.012
$\mathcal{R}(\Delta m_s)$	1.050 ± 0.001	1.029	1.029 ± 0.007
$\mathcal{B}(B_s \to \mu^+ \mu^-)/10^{-9}$	2.824 ± 0.063	29.3	3.427 ± 0.018
$\mathcal{R}(K o \pi^0 u \overline{ u})$	0.973 ± 0.001	0.977	0.994 ± 0.003

• For TDR:

(i) Can we find a *nice point* which represents a physics goal of Super flavour factory (non-MFV? non-mSUGRA type)?

New activity I: Benchmark

- SUSY Benchmark point for flavour (started in Valencia meeting):
 - (i) The SPS (snowmass point and slope) are useful to see a correlation between collider (high PT) and flavour experiments.
 - (ii) But current points are not necessarily favorable for flavour.
 - (iii) Furthermore, some of the points look already been excluded by e.g. $B \to X_s \gamma$ or new g-2.

 $\frac{\mathcal{R}(x)}{x}$

```
SPS1a: m_0 = 100 \text{GeV}, \quad m_{1/2} = 250 \text{GeV}, \quad (7)
A_0 = -100 \text{GeV}, \quad \tan \beta = 10, \quad \mu > 0
SPS4: m_0 = 400 \text{GeV}, \quad m_{1/2} = 300 \text{GeV},
A_0 = 0, \quad \tan \beta = 50, \quad \mu > 0,
SPS5: m_0 = 150 \text{GeV}, \quad m_{1/2} = 300 \text{GeV},
A_0 = -1000, \quad \tan \beta = 5, \quad \mu > 0.
```

	SPS1a	SPS4	SPS5
$\mathcal{R}(B \to X_s \gamma)$	0.919 ± 0.038	0.248	0.848 ± 0.081
$\mathcal{R}(B o au u)$	0.968 ± 0.007	0.436	0.997 ± 0.003
$\mathcal{R}(B \to X_s l^+ l^-)$	0.916 ± 0.004	0.917	0.995 ± 0.002
$\mathcal{R}(B \to K \nu \overline{\nu})$	0.967 ± 0.001	0.972	0.994 ± 0.001
$\mathcal{B}(B_d \to \mu^+ \mu^-)/10^{-10}$	0.031 ± 0.038	16.9	1.979 ± 0.012
$\mathcal{R}(I)$			

• For TDR:

(i) Can we find a *nice point* wh Super flavour factory (non-MF

Tools is provided.

A mini-working proposed.

Activity will start soon...

New activity II: MSSM+ specific soft-SUSY model

- Importance to have specific models:
 - (i) Enable to predict the mass insertion parameter

```
e.g. Hierarchy model: \delta_{23} \approx Vts (talk M.Nardecchia)
```

- e.g. mSUGRA, Gauge mediation etc...(talk S. Jager)
- (ii) Enable to see the correlations to the other experiments (Bs mixing, lepton sector, high PT etc)

```
e.g. SUSY SU(5): Bs mixing vs T \rightarrow \mu \gamma (talk Y. Shimizu)
```

- TDR:
 - (i) Study the impact of Super Flavour Factory on those theoretically motivated models.

New activity II: MSSM+ specific soft-SUSY model

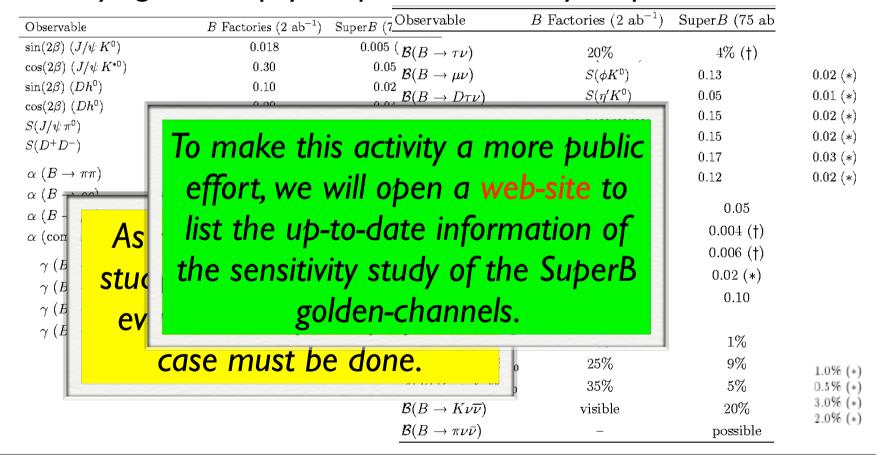
- Importance to have specific models:
 - (i) Enable to predict the mass insertion parameter
 - e.g. Hierarchy model: $\delta_{23} \approx Vts$ (talk M.Nardecchia)
 - e.g. mSUGRA, Gauge mediation etc...(talk S. Jager)
 - (ii) Enable to see the correlations to the other experiments (Bs mixing, lepton sector, high PT etc)
 - e.g. SUSY SU(5): Bs mixing vs $T \rightarrow \mu \gamma$ (talk Y. Shimizu)
- TDR:
 - (i) Study the impact of Study theoretically motivated r

Discussions about new theoretical ideas at the meetings.

New activity III: new physics in new observable

• Studying further physics potential is always important!

Observable B	Factories (2 ab ⁻¹)	SuperB (7 Observable	B Factories (2 ab^{-1})	Super B (75 ab	
$\sin(2\beta) \; (J/\psi \; K^0)$	0.018	$0.005~(~{\cal B}(B o au u)$	20%	4% (†)	
$\cos(2\beta) \; (J/\psi K^{*0})$	0.30	$rac{0.05}{0.02}\mathcal{B}(B o\mu u)$	$S(\phi K^0)$	0.13	0.02 (
$\sin(2\beta) \; (Dh^0)$	0.10	$0.02 \atop 0.04 \mathcal{B}(B \to D\tau\nu)$	$S(\eta'K^0)$	0.05	0.01 (
$\cos(2\beta) \ (Dh^0)$	0.20		$S(K_s^0K_s^0K_s^0)$	0.15	0.02 (
$S(J/\psi \pi^0)$	0.10	${0.02 \atop 0.03}~\mathcal{B}(B o ho\gamma)$	$S(K_s^0\pi^0)$	0.15	0.02 (
$S(D^+D^-)$	0.20	$\mathcal{B}(B o ho\gamma)$ $\mathcal{B}(B o \omega\gamma)$	$S(\omega K_s^0)$	0.17	0.03 (
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	$_1A_{C\!P}(B o K^*\gamma)$	$S(f_0K_s^0)$	0.12	0.02 (
$\alpha \ (B \to \rho \rho)$	~ 7°	$A_{CP}(B o ho\gamma)$	~ 0.20	0.05	
$\alpha \ (B \to \rho \pi)$ $\alpha \ (\text{combined})$	$\sim 12^{\circ} \ \sim 6^{\circ}$	$_1A_{C\!P}(b o s\gamma)$	0.012 (†)	0.004 (†)	
,		$A_{C\!P}(b o (s+d)\gamma)$	0.03	0.006 (†)	
$\gamma (B \to DK, D \to CP \text{ eigenst})$,	$S(K^0_{_S}\pi^0\gamma)$	0.15	0.02 (*)	
γ ($B \to DK$, $D \to \text{suppressed}$ γ ($B \to DK$, $D \to \text{multibody}$	*	$S(ho^0\gamma)$	possible	0.10	
$\gamma (B \to DK, D \to \text{inullibody})$ $\gamma (B \to DK, \text{combined})$	states) ~ 9 $\sim 6^{\circ}$				
, (2 211, 0011111104)	, and the second	$A_{CP}(B \to K^*\ell\ell)$	7%	1%	
		$A^{FB}(B o K^*\ell\ell)s_0$	25%	9%	1.0% (
		$A^{FB}(B o X_s\ell\ell)s_0$	35%	5%	0.5%
		$\mathcal{B}(B\to K\nu\overline{\nu})$	visible	20%	3.0% 2.0%
		${\cal B}(B o\pi uar u)$	_	possible	2.070


New activity III: searching more physics cases

• Studying further physics potential is always important!

Observable	B Factories (2 ab ⁻¹)	SuperB (7 Observable	B Factories (2 ab ⁻¹)	Super B (75 ab	
$\sin(2\beta) \; (J/\psi \; K^0)$	0.018	$0.005 (B(B \to \tau \nu))$	20%	4% (†)	
$\cos(2\beta) \; (J/\psi \; K^{*0})$	0.30	$^{0.05}$ $\mathcal{B}(B \to \mu \nu)$	$S(\phi K^0)$	0.13	0.02 (*)
$\sin(2\beta) \ (Dh^0)$	0.10	$0.02 \atop 0.04 \mathcal{B}(B o D au u)$	$S(\eta'K^0)$	0.05	0.01 (*)
$\cos(2\beta) \ (Dh^0)$	0.20		$S(K^0_{\scriptscriptstyle S}K^0_{\scriptscriptstyle S}K^0_{\scriptscriptstyle S}$	0.15	0.02 (*)
$S(J/\psi \pi^0)$	$0.10 \\ 0.20$	${0.02 \atop 0.03}~\mathcal{B}(B o ho\gamma)$	$S(K^0_s\pi^0)$	0.15	0.02 (*)
$S(D^+D^-)$		$\mathcal{B}(B o\omega\gamma)$	$S(\omega K_s^0)$	0.17	$0.03 \; (*)$
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	$A_{CP}(B o K^*\gamma)$	$S(f_0K_s^0)$	0.12	$0.02 \; (*)$
$\alpha (B)$	_ · 7°	11207 (B 11 7)	~ 0.20	0.05	
$\alpha (B - As max)$	re brecise	sensitivity	0.012 (†)	0.004 (†)	
	ne precise	Schollvily	0.03	0.006 (†)	
study l	pecomes a	vailable, re-	0.15	0.02 (*)	
			possible	0.10	
$\gamma^{(B)}$ evalu	ations of t	he physics			
1 (2	•		7%	1%	
Ca	se must be	e done.	25%	9%	1.0% (*)
		<u> </u>	35%	5%	0.5% (*)
-		$\mathcal{B}(B o K u \overline{ u})$	visible	20%	3.0% (*) 2.0% (*)
		${\cal B}(B\to\pi\nu\bar\nu)$	_	possible	2.070 (*)

New activity III: searching more physics cases

• Studying further physics potential is always important!

