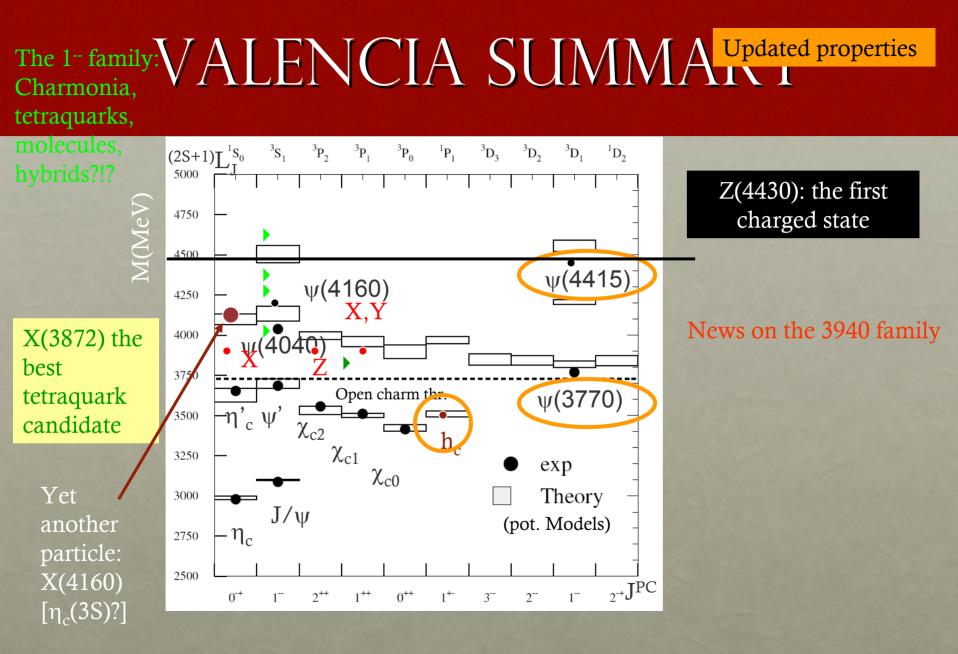
WG6 ACTIVITIES


Conveners:

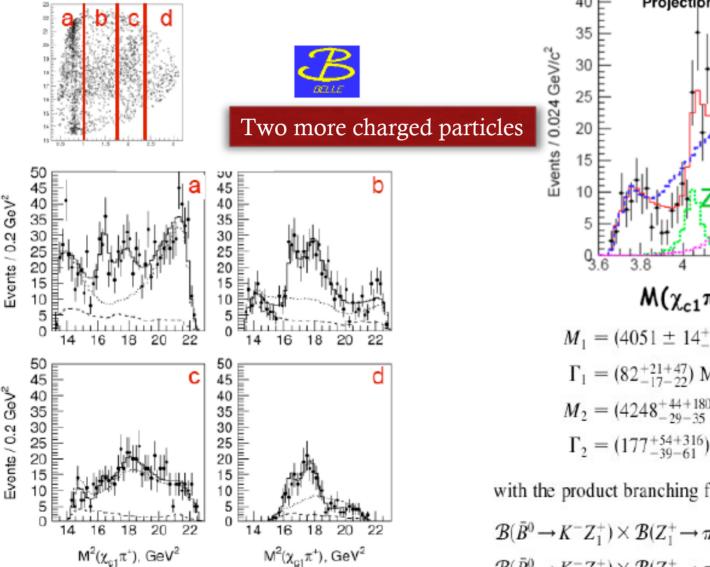
Riccardo Faccini, Antonio Polosa

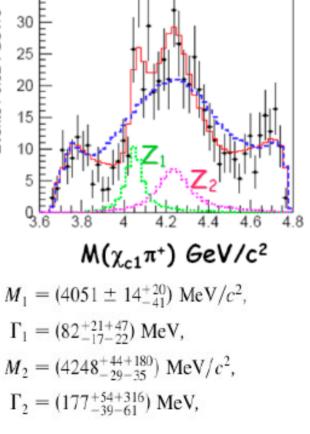
SPECTROSCOPY

EXOTICA

Other physics

+ updates on $Y(nS) \rightarrow Y(mS)$ transitions

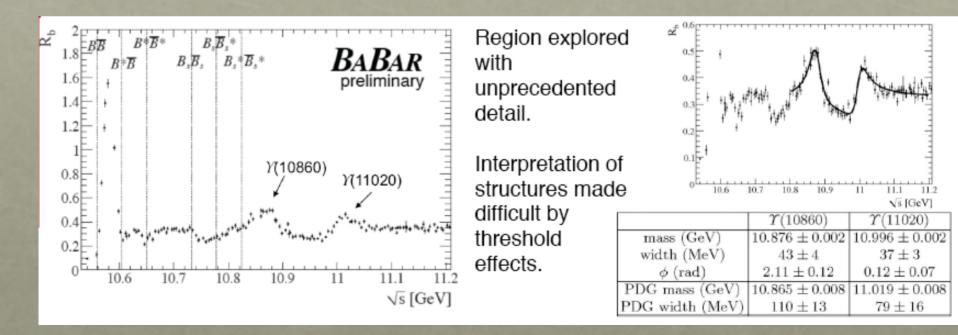

THE OBSERVATION MATRIX


	$J/\psi \pi^+\pi$	D(*)D(*)	ͿͿψω	$J/\psi \pi^+\pi^0$	ψ(2S)π	J/ψK,π	Ψ(2S)ππ	J/ψφ,η	ͿͿψγ
Notes	Mass range for B	Low stat	Only B dec	Mass range! No ISR	No ISR No π ⁰	No Search	No B- dec	Only B dec	Mass windo w
X(3872)	Seen	Seen	Not seen	Not seen	Not seen	No search	N/A	Not seen	Seen
Y(3940)	No search	X(3940) ?	Seen	No search	Not seen	No search	No search	No Fit	No fit
Y(4260)	Seen	No fit	No fit	No search	No search	No search	Not seen	No fit	N/A
Y(4350)	Not seen	No fit	No fit	No search	No search	No search	Seen	No fit	N/A
Z(4430)	No search	No search	No fit	No search	Seen	No search	No search	No Fit	No searc h
Y(4660)	Not seen	No fit	No fit	No search	No search	No search	Seen	No Fit	N/A

COMMENTS & PERSPECTIVES @VALENCIA

- A branch of physics where there is evidence that something 'new' is going on
 - Deserves full investigation!
 - Need to observe as many modes as possible in a large range of masses
 - Most of the non bserved modes have low ϵBF . Assuming one wants to reach at least those modes with a BF~0.1 max(BF) and ϵBF ~0.1 max(ϵBF), one needs at least 1000 times more stat.
 - Could exploit the possibility to scan in energy
- A long way before the panorama is clarified.
 - The BF picture still needs to be clarified
 - SuperB might be needed to say the final word
- Work to be done, starting from this workshop
 - Systematic definition of theory predictions in the most credited models
 - Collection of material on current results in order to sharpen the case for 'new' phenomena
 - Study of the impact of a SuperBF on this picture, in the context of its competitors

NEWS ON SPECTROSC Projection with K* veto 40



with the product branching fractions of

$$\mathcal{B}(\bar{B}^0 \to K^- Z_1^+) \times \mathcal{B}(Z_1^+ \to \pi^+ \chi_{c1}) = (3.0^{+1.5}_{-0.8} + 3.7_{-1.6}) \times 10^{-5},$$

$$\mathcal{B}(\bar{B}^0 \to K^- Z^+) \times \mathcal{B}(Z^+ \to \pi^+ \chi_{c1}) = (4.0^{+2.3}_{-0.8} + 19.7_{-1.6}) \times 10^{-5},$$

NEWS FROM SPECTROSCOPY

- Energy scan perfomed by PEP-II
 - Test of techniques for eventual SuperB scan in the cc~ area (or above 11.2 GeV?)

OVERVIEW OF DEVELOPMENTS

Three directions

1. Interplay and complementarity with other experiments

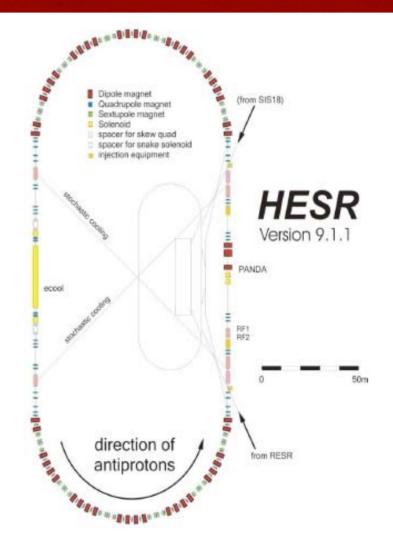
• TODAY: Panda

Talks from D. Bettoni, D. Bugg, and G. Cibinetto **2. Experimental effects** \rightarrow **full simulation**

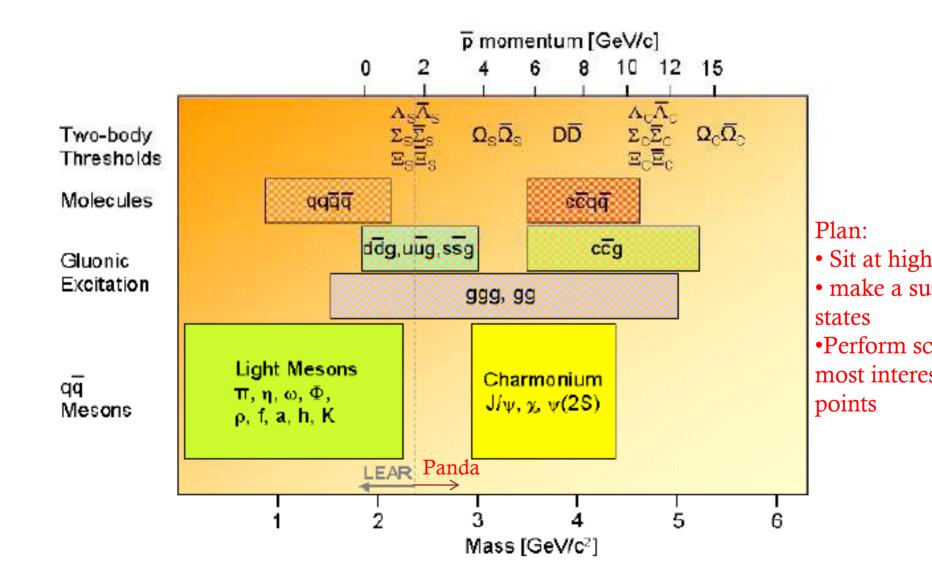
3. Other physics

- TODAY:
 - Higgs searches Talks from M. A. Sanchis-Lozano and A. Di
 - Decoherence and CPT Domenico

PANDA AT FAIR

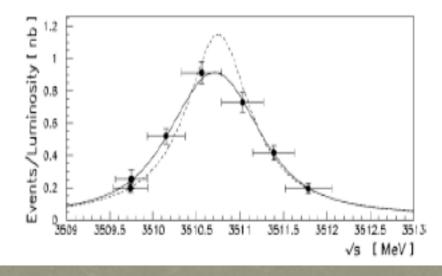

- pp annihilations
- P_{beam} = 1 15 GeV/c
- $N_{stored} = 5 \times 10^{10} \text{ p}^-$
- Internal Target

High resolution mode


δp/p ~ 10⁻⁵ (electron cooling)
 Lumin. = 10³¹ cm⁻² s⁻¹

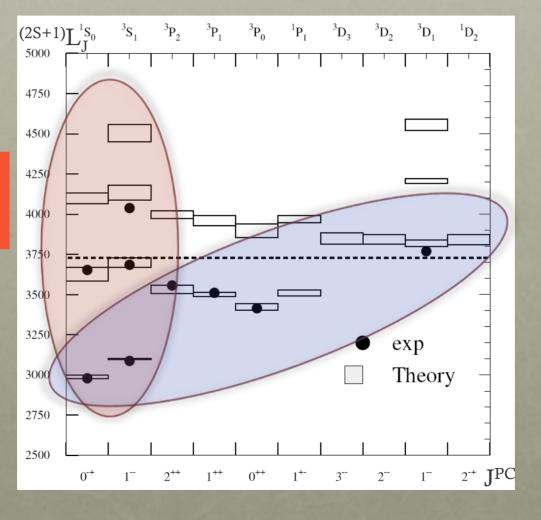
High luminosity mode

- Lumin. = 2 x 10³² cm⁻² s⁻¹
- δp/p ~ 10⁻⁴ (stochastic cooling)



QCD Systems to be Studied in PANDA

PANDA VS SUPERB (I)


- Common coverage of all chamonium states (up to sqrt(s)~5GeV)
- Panda very suited for measurement of widths and form factors: eccellent center of mass resolution

 χ_c width measurement at E835

PANDA VS SUPERB (II)

B-Factories better suited to low L and 1--

pp annihilations better suited to lower states (narrower)

Still need to compare yields on same footing!

SIMULATION NEEDS

- Valentina Santoro has agreed to run some simulations
- The goal is to have enough statistics to have unmistakable signals (full reco)
 - Relatively little dependence on detector performances
 - We just need to be sure nothing is worsened too much wrt BaBar
- Critical need: machine background
- Major worries: ISR reconstruction (missing mass) and neutrals
 - Choise of modes to simulate (~50K each):
 - $e+e- \rightarrow Y\gamma_{ISR}$, $Y \rightarrow D_s^{(*)}D_s^{(*)}$ [most interesting final state and testing ISR]
 - B0 \rightarrow X+K-, X+ \rightarrow J/ $\psi\pi$ + π 0 [testing PID and π 0 reco]
- Time scale: end of year

Sensitivity to little Higgs Update since Valencia

We have incorporated in our study (arXiv:0810.4763 [hep-ph]):

• All constraints from B-physics, LEP and g-2 using NMSSMtools

[hep-ph/0406215], including the recent discovery of the $\eta_b(1S)$

state by BaBaR

Method: search for $Y(nS) \rightarrow A\gamma$, A--> $\tau\tau$ • exclusive reco

- lepton universality in YnS) decays
- More complete expressions on branching ratios taking into account the mixing of pseudoscalar Higgs A_1 with *all* $\eta_b(nS)$ states below open bottom threshold (n=1, 2, 3).
- 2-sigma region of discovery in a X_d M_{A1} plot is shown

Conclusions

What if ...

there exists a light CP-odd Higgs of about 10 GeV? We have checked that current BLEP bounds can be evaded in the NMSSM

- A high luminosity B factory is the ideal place to discover/study such a light Higgs boson using $\Upsilon Y(nS)$ (n=1,2,3) by looking at
 - decay into $\tau^+ \tau^- (\gamma)$: Lepton universality test
 - In progress - direct searches for monochromatic photons (1- or 2-peak scenario)
 - decay into hadrons via the $\eta \eta_{b0}$ component of the A₁
- Higher states like $\Upsilon Y(4S)$ could be considered at a Super B factory
- Related topics: B_s decay, muon g-2 anomaly, light dark matter ...
- Difficult but not impossible discovery scenario for a light A₁ at the LHC Moreover Higgses other than the light pseudoscalar would be at LHC reach!
- The seek of the A₁ boson can be seen as complementary/prior to other searches to be performed at the LHC/ILC

CPTV AND QUANTUM COHERENCE

- <u>New topic</u> [Not so sure how much it belongs to this WG...
]
- Talk from A. Di Domenico (KLOE) on applications to B-Physics of Kaon studies
- Possible CPT Violation:
 - 1) in eigenstate definition

$$B_L^0(t) = \left[p \cdot \sqrt{1 - z} \cdot B^0 + q \cdot \sqrt{1 + z} \cdot \overline{B}^0 \right] \cdot e^{-\gamma_L t}$$

$$B_H^0(t) = \left[p \cdot \sqrt{1 + z} \cdot B^0 - q \cdot \sqrt{1 - z} \cdot \overline{B}^0 \right] \cdot e^{-\gamma_H t}$$

Test of quantum coherence

$$\begin{aligned} \mathbf{2} & |i\rangle = \frac{1}{\sqrt{2}} \left[\left| B^{0} \right\rangle \left| \overline{B}^{0} \right\rangle - \left| \overline{B}^{0} \right\rangle \left| B^{0} \right\rangle \right] \\ I(f_{1}, f_{2}; \Delta t) &= \frac{N}{2} \left[\left| \left\langle f_{1}, f_{2} \right| B^{0} \overline{B}^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle f_{1}, f_{2} \right| \overline{B}^{0} B^{0}(\Delta t) \right\rangle \right|^{2} \\ & - \left[1 - \zeta_{0\overline{0}} \right] \cdot 2 \Re \left(\left\langle f_{1}, f_{2} \right| B^{0} \overline{B}^{0}(\Delta t) \right\rangle \left\langle f_{1}, f_{2} \right| \overline{B}^{0} B^{0}(\Delta t) \right\rangle^{*} \right) \right] \end{aligned}$$

Feynman described the phenomenon of interference as containing "the only mistery" of quantum mechanics Decoherence parameter:

$$\zeta_{0\overline{0}} = 0 \rightarrow QM$$

 $\zeta_{0\overline{0}} = 1 \rightarrow \text{total decoherence}$ (also known as Furry's hypothesis or spontaneous factorization) [W.Furry, PR 49 (1936) 393]

Special case if ζ =0 (totally destructive QM interference): $I(f, f; \Delta t = 0) = 0$

Decoherence and CPT violation

Modified Liouville - von Neumann equation for the density matrix of the kaon system:

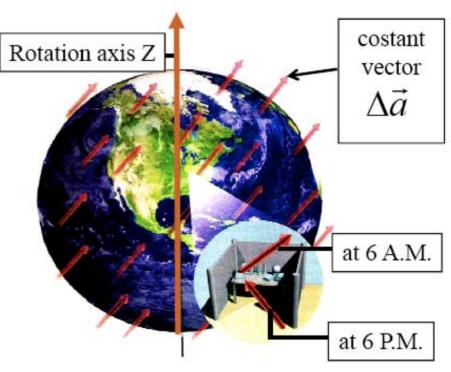
3)
$$\dot{\rho}(t) = -iH\rho + i\rho H^{+} + L(\rho)$$
 extra term inducing decoherence:
pure state => mixed state

Possible decoherence due quantum gravity effects:

Black hole information loss paradox => Possible decoherence near a black hole. Hawking [1] suggested that at a microscopic level, in a quantum gravity picture, nontrivial space-time fluctuations (generically <u>space-time foam</u>) could give rise to decoherence effects, which would necessarily entail a violation of CPT [2]. J. Ellis et al.[3-6] => model of decoherence for neutral kaons => 3 new CPTV param. α, β, γ :

$$L(\rho) = L(\rho; \alpha, \beta, \gamma)$$

$$\alpha, \gamma > 0 , \alpha\gamma > \beta^{2}$$
At most: $\alpha, \beta, \gamma = O\left(\frac{M_{K}^{2}}{M_{PLANCK}}\right) \approx 2 \times 10^{-20} \text{ GeV}$


$$|i\rangle \propto \left(K^{0}\overline{K}^{0} - K^{0}\overline{K}^{0}\right) + \bigotimes K^{0}\overline{K}^{0} + K^{0}\overline{K}^{0}\right)$$

$$\propto \left(K_{S}K_{L} - K_{L}K_{S}\right) + \bigotimes K_{S}K_{S} - K_{L}K_{L}\right)$$

at most one expects:
$$|\omega|^{2} = O\left(\frac{E^{2}/M_{PLANCK}}{\Delta\Gamma}\right) \approx 10^{-5} \Rightarrow |\omega| \sim 10^{-3}$$

CPT and Lorentz invariance violation (SME)

z depends on sidereal time t since laboratory frame rotates with Earth

$$\beta^{\mu} \Delta a_{\mu} = \gamma_{K} [\Delta a_{0} + \beta_{K} \Delta a_{Z} \cos \chi + \beta_{K} \Delta a_{Y} \sin \chi \sin \Omega t + \beta_{K} \Delta a_{X} \sin \chi \cos \Omega t]$$

 Ω : Earth's sidereal frequency χ : angle between the z lab. axis and the Earth's rotation axis

A. Di Domenico

SUPERB SENSITIVITY

@B-Factories: time dependence of doubly tagged events

Test of	Param.	Present best measurement	SuperB	
			L~50 ab⁻ ¹	
СРТ	Re z	0.00 ± 0.12	\pm 0.3 $ imes$ 10 ⁻³	
CPT	Im z	$(-13.9 \pm 7.8) \times 10^{-3}$	\pm 0.6 $ imes$ 10 ⁻³	
QM	ζ <u>00</u>	$(2.9 \pm 5.7) \times 10^{-2}$	\pm 3.6 $ imes$ 10 ⁻³	
QM	$\zeta_{ m SL}$	$(0.4 \pm 1.7) \times 10^{-2}$	\pm 1 $ imes$ 10 ⁻³	
CPT & QM	α,β,γ			
CPT & EPR corr.	Re(w)	<0.01	\pm 4 × 10 ⁻⁴	
CPT & EPR corr.	Im(w)			
CPT & Lorentz	∆a ₀ -0.3∆a _Z	$(-3.0 \pm 2.4) \times \Delta m / \Delta \Gamma$	\pm 1.5 × Δ m/ Δ Γ	
		$ imes 10^{-15}~{ m GeV}$	× 10 ⁻¹⁶ GeV	
CPT & Lorentz	$\Delta a_{\rm X}$	$(-22 \pm 7) \times \Delta m / \Delta \Gamma$	\pm 4.4 × Δ m/ Δ Γ	
		$ imes 10^{-15} \mathrm{GeV}$	× 10 ⁻¹⁶ GeV	
CPT & Lorentz	Δa_{Y}	$(-14 \pm 12) \times \Delta m / \Delta \Gamma$	\pm 7.6 × $\Delta m/\Delta \Gamma$	
		$ imes 10^{-15} \mathrm{GeV}$	× 10 ⁻¹⁶ GeV	

PATH TO TDR

SPECTROSCOPY

Refine the case adding efficiencies include complementarity with other experiments

EXOTICA

Other physics

Are we missing anything? Ideas are welcome!

Only one open thread .. Anything more?