Status report of the Novosibirsk activities

E.A.Kravchenko Budker INP, Novosibirsk, Russia

Outline

Monte Carlo simulation:

- |V_{ub}| measurement from inclusive spectrum of charmless semileptonic B decays
- FastSim simulation of the forward FARICH

• FARICH optimization:

- SiPM radiation hardness
- MCP PMT option
 - Optimization for the momentum measurement
 - Possible geometry option

• Test beam line at Budker INP, status

|V_{ub}| measurement from inclusive spectrum of charmless semileptonic B decays

We look for the physics process where PID acceptance will play critical role:

- classical, important
- large multiplicity
- need PID
- $|V_{ub}|$ plays a critical role in testing of SM
- Currently one of the most promising procedure for $|V_{ub}|$ measurement is to extract it from inclusive $B \rightarrow X_u l v$ decays where theoretical uncertainties are significantly reduced:
- needs full reconstruction of tagging B-mesons to receive clean sample (PID!)
- needs good measurement of X_u invariant mass to suppress background from X_c (PID!)

V_{ub} measurement from inclusive spectrum of semileptonic B decays

• The first step is the geometry efficiency study.

 $cos\theta = -0.830 \div 0.955$ and p < 700 MeV (DC PID)

 $cos\theta = -0.892 \div 0.906$ (DIRC), $0.894 \div 0.955$ (forward PID), $-0.956 \div -0.825$ (backward PID),

 $cos\theta = -0.809 \div 0.954$ (calorimeter),

$$E_{a-} = 7 \; GeV \; E_{a+} = 4 \; GeV \; B = 1.5 \; T$$

EvtGen \rightarrow GEANT4 \rightarrow For charged PID the first cross is calculated, all other crosses and the secondary particles are ignored. For neutral particles, the cross of calorimeter = the solid angle of calorimeter.

|V_{ub}| measurement from inclusive spectrum of semileptonic B decays

Particles momentum spectrums

- for 50% of pions P > 400 MeV
- for 50% of kaons P> 800 MeV

|V_{ub}| measurement from inclusive spectrum of charmless semileptonic B decays

PID system	100% reco γ in calorimet er	no magnetic field	100% reco KI and n(.n) in calorimeter	no decays K [±] , π [±] , μ [±] in flight
barrel	0.82	3.23	7.03	12.88
barrel +forward	1.32	4.73	10.03	19.32
barrel +backward	1.23	4.23	9.00	16.95
barrel +forward +backward	2.0	6.25	13.00	25.84

 Forward gives at least 30% increase in efficiency

- the loss of the detection efficiency due to decays is very large
- What about backward PID?

FastSim of the Forward FARICH

Amount of material 24% of X₀ (option with MCP PMT)
Will be ready next week

FARICH with MRS APD

- Noise increase by a factor of 2 after 10¹⁰ neutrons (1-2 MeV) per cm²:
 - BaBar rates ~ 5 · 10¹¹ in a year at the EMC endcap (at 7 · 10³³ cm⁻² sec⁻¹) (J. Va'vra)
 - Belle rates 4 · 10¹¹ in a year at the EMC endcap (P. Krizhan)
- Currently SiPM can not be used at SuperB FARICH unless some serious efforts will be done:
 - Cooling up to -50 C°
 - Annealing at 250 C°
 - Progress in initial radiation hardness (move from p type to n type)

FARICH for the SuperB detector (MCP PMT)

- Photon detector = MCP PMT from Burle
- We want to work also at low momentum region (< 1 GeV/c) = additional radiator with high index of refraction
- Particle momentum measurement = small granularity

Optimizing FARICH momentum resolution

σP/P=γ²·σβ/β
 Change of the momentum focus for aerogel from $β_{opt}$ = 1 to βγ_{opt}= 1

FARICH possible designs for CsI EMC endcap

100 mm DC cut

200 mm DC cut

FARICH for the SuperB detector (MCP PMT)

- Burle MCP PMT with 1.6x1.6 mm pixels (32x32 matrix), photoelectron collection efficiency 70%, geometrical factor 85%
- 3-layer focusing aerogel, n_{max}=1.07, total thickness 30 mm
- Number of PMTs 550
- Number of channels 550000
- Amount of material, (X₀) = 3.5%(aerogel)+ 2.5%(water)+ 14%(MCP PMT)+8% (support, electronics, cables) ~ 28%

FARICH expected perfor Carlo results

FARICH momentum resolution

- Data for the DC momentum resolution are from the FastSim (decays are switched off!)
- need to take into account real polar angle of the particle
- Improvement in momentum measurement resolution from <u>10 to 15%</u> in the working region – the same improvement will be if we add 10-15 cm to DC

FARICH pro and contra

- Good PID in wide momentum region (π/K separation from 0.6 to 6 GeV/c)
- Improvement of the momentum resolution by 10-15% in the forward region
- In flight decays detection (?)
- Amount of material is about 28% of X₀
- Large number of channels

Test beam at VEPP-4M, Novosibirsk

- E_{max} beam = 5.5 GeV
- We insert the converter in the beam halo to obtain bremstrahlung gammas or use the bremstrahlung gammas from the residual gas
- We convert gamma-quanta to electron-positron pairs in the target.
- To select electrons (positrons) with the required energy we use the magnet

Test beam apparatus

What we have for the test beam and prototype

Some new aerogel photos

These 4 large and many of small multylaer aerogel blocks are ready for testing with the beam

4 layers

Our plans for test beam and prototype

We investigating possibilities to purchase Burle MCP PMT
Magnet will be installed during summer time
The work with prototype will start at September-October
The first experiment – November-December 2009

Backup slides

Forward TOF and FARICH comparison

Expected π/K separation

- Much better $\pi/K, \mu/\pi, e/\pi$ identification
- Momentum measurement improvement in the forward
- Better background endurance

- •15 cm of additional space
- 10 times more channels
- Price (?)

The amount of material is almost the same

MRS APD parameters

- Producer Center of Perspective Technology and Apparatus – CPTA, Moscow http://www.spta-apd.ru/
- Genuine name MRS APD (other names: silicon photomultiplier, PPD,MPPC...)
- 2.1x2.1 mm sensor
- 4x4 mm case size
- PDE=40% @ 600 nm
- Gain ~ 4.10⁵
- Time resolution ~100 ps
- Dark counts ~10 MHz (0.5pe threshold)