Impact of forward PID on |Vub| measurement and possible momentum resolution improvement

E.A.Kravchenko Budker INP, Novosibirsk, Russia

Outline

- |V_{ub}| measurement from inclusive spectrum of charmless semileptonic B decays
- FARICH with MCP PMT
 - Optimization for the momentum measurement
 - Optimization for low momentum PID

|V_{ub}| measurement from inclusive spectrum of charmless semileptonic B decays

We look for the physics process where PID acceptance will play critical role:

- classical, important
- large multiplicity
- need PID
- |V_{ub}| plays a critical role in testing of SM
- Currently one of the most promising procedure for $|V_{ub}|$ measurement is to extract it from inclusive $B \rightarrow X_u l v$ decays where theoretical uncertainties are significantly reduced:
- needs full reconstruction of tagging B-mesons to receive clean sample (PID!)
- needs good measurement of X_u invariant mass to suppress background from X_c (PID!)

|V_{ub}| measurement from inclusive spectrum of semileptonic B decays

The first step is the geometry efficiency study.

 $cos\theta = -0.830 \pm 0.955 \text{ and } p < 700 \text{ } MeV \text{ (DC PID)}$ $cos\theta = -0.892 \pm 0.906 \text{ (DIRC)}, 0.894 \pm 0.955 \text{ (forward PID)}, -0.956 \pm -0.825 \text{ (backward PID)},$ $cos\theta = -0.809 \pm 0.954 \text{ (calorimeter)},$ $E_{e^{-}} = 7 \text{ } GeV \text{ } E_{e^{+}} = 4 \text{ } GeV \text{ } B = 1.5 \text{ } T$

EvtGen \rightarrow GEANT4 \rightarrow For charged PID the first cross is calculated, all other crosses and the secondary particles are ignored. For neutral particles, the cross of calorimeter = the solid angle of calorimeter.

$\left|V_{ub}\right|$ measurement from inclusive spectrum of semileptonic B decays

Particles momentum spectrums

- for 50% of pions P > 400 MeV
- for 50% of kaons P> 800 MeV

|V_{ub}| measurement from inclusive spectrum of charmless semileptonic B decays

PID system	100% reco γ in calorimet er	no magnetic field	100% reco KI and n(.n) in calorimeter	no decays K [±] , π [±] , μ [±] in flight
barrel	0.82	3.23	7.03	12.88
barrel +forward	1.32	4.73	10.03	19.32
barrel +backward	1.23	4.23	9.00	16.95
barrel +forward +backward	2.0	6.25	13.00	25.84

- Forward gives at least 30% increase in efficiency
- the loss of the detection efficiency due to decays is very large
- What about backward PID?

Focusing aerogel RICH concept

Objective: to reduce thickness contribution

FARICH for the SuperB detector (MCP PMT)

- Photon detector = MCP PMT from Burle
- We want to work also at low momentum region (< 1 GeV/c) = additional radiator with high index of refraction
- Particle momentum measurement = small granularity

FARICH for the SuperB detector (MCP PMT)

- Burle MCP PMT with 1.6x1.6 mm pixels (32x32 matrix), photoelectron collection efficiency 70%, geometrical factor 85%
- 3-layer focusing aerogel,
 n_{max}=1.07, total thickness 30 mm
- Number of PMTs 550
- Number of channels 550000
- Amount of material, (X₀) = 3.5%(aerogel)+ 2.5%(water)+ 14%(MCP PMT)+8% (support, electronics, cables) ~ 28%

Optimizing FARICH momentum resolution

$$\sigma P/P = \gamma^2 \cdot \sigma \beta/\beta$$

Change of the momentum focus for aerogel from β_{opt} = 1 to βγ_{opt} = 1

FARICH expected perfor of 100 Carlo results

• $N_{pe} = 20 + 40$

FARICH momentum resolution

- Data for the DC momentum resolution are from the FastSim (decays are switched off!)
- need to take into account real polar angle of the particle
- Improvement in momentum measurement resolution from 10 to 15% in the working region the same improvement will be if we add

the same improvement will be if we add 10-15 cm to DC

FARICH pro and contra

- Good PID in wide momentum region (π/K separation from 0.6 to 6 GeV/c)
- Improvement of the momentum resolution by 10-15% in the forward region
- In flight decays detection (?)
- Amount of material is about 28% of X₀
- Large number of channels

Backup slides

Forward TOF and FARICH comparison

Pro Much better π/Κ,μ/π,e/π identification Momentum measurement improvement in the forward Better background endurance 15 cm of additional space 10 times more channels Price (?)

The amount of material is almost the same