DCH and SVT studies with FastSim

Matteo Rama Laboratori Nazionali di Frascati

17 June 2009

Configurations I

- Start with the current configuration in FastSim (default config. in the following)
- DCH
 - ▶ 10 SuperLayers (4 cell layers per SL)
 - inner wall: 23.6cm
 - Axial/Stero+/Stereo- geometry
 - spatial reso: I25μm
- SVT: nominal baseline. BaBar SVT + L0. Angular coverage 300mrad fwd and bwd

Configurations II

- DCH: Babar
 - ▶ 10 SuperLayers (BaBar)
 - inner wall: 23.6cm; spatial reso: 125μm
- SVT: nominal baseline with
 - **L**3: 5.92cm → **9.0cm**
 - **L4:12.22cm** → **19.6cm**
 - \blacktriangleright L5:14.22cm \rightarrow 21.6cm

- DCH:
 - 10 SuperLayers (Babar) + 4 cell layers
 - inner wall: 23.6cm \rightarrow 16.22cm
 - Axial/Stereo+/Stereo- geometry
 - spatial reso: I25μm
- SVT: nominal baseline

Configurations III

- DCH:
 - ▶ 10 SuperLayers (Babar) + 6 cell layers
 - inner wall: 23.6cm \rightarrow 13.72cm
 - Axial/Stereo+/Stereo- geometry
 - spatial reso: 125μm
- SVT: nominal baseline with
 - L3: 5.92cm
 - ► L4:12.22cm → 9.72cm
 - **L**5:14.22cm → **11.72cm**
 - "SVT@11.72 and DCH@13.72"

- DCH: Babar
 - 10 SuperLayers (Babar) + 7 cell layers
 - inner wall: 23.6cm \rightarrow 12.52cm
 - Axial/Stereo+/Stereo- geometry
 - spatial reso: I25μm
- SVT: nominal baseline with
 - L3: 5.92cm
 - **L**4:12.22cm → **9.52cm**
 - ► L5:14.22cm → 10.52cm

"SVT@10.52 and DCH@12.52"

Single particles

- single charged π particles with:
 - pt in [0.05,4.5] GeV/c
 - cosTheta in [-1,1]
 - Phi in $[0,2\pi]$
- pt, theta and phi resolutions in bins of pt

Note:

I didn't focus on the track reco. efficiencies. Some problems observed in previous revisions of V0.0.9. Code has evolved quite recently. See Dave's talk later in this session

pt resolution vs. pt

pi-: pt reso. [GeV/c]

configurations with smaller DCH radii give a slightly better pt measurement at pt in [~0.1-0.5]GeV/c

pt resolution vs. pt

pi-: pt reso. [GeV/c]

the difference is larger at higher pt

$\sigma(pt)/pt$ vs. pt

$\sigma(pt)/pt$ vs. pt

The configuration with the SVT extended to a radius of 21.6cm give a worse pt measuremnt

polar angle vs. pt

pi-: theta reso. [rad]

polar angle vs. pt

In general no significant difference in the measurement of θ

Phi angle vs. pt

Phi angle vs. pt

In general no significant difference in the measurement of ϕ

B reconstruction

- Check how the configurations affect B reconstruction
- Consider 2 decay trees:
 - \rightarrow B⁰ $\rightarrow \pi^+\pi^-$
 - \triangleright B→D*+K⁻, D*+→D⁰π⁺, D⁰→K⁻π⁺ (D⁰ mass constrained)
- ▶ Compare vertex resolutions, ΔE and efficiency

Note: the PmcMergeHits module was disabled in this tests. Therefore while the relative comparison of ΔE resolutions is probably meaningful, the absolute values are a little underestimated

$B \rightarrow \pi^+\pi^- : \Delta E$ resolution

DeltaE resolution of $B \rightarrow \pi^+\pi^-$

Consistently with the results showed for the single tracks, the kinematic quantities of the composite particles have a better resolutions when the number of DCH layers increases

$B \rightarrow \pi^+ \pi^-$: reconstruction efficiency

reconstruction efficiency of B→ π⁺π⁻

▶ There's a ~2% (absolute) efficiency gain when the first DCH layers are closer to the IP

$B \rightarrow \pi^+\pi^-$: vertex resolution

Vertex x/y/z-projection resolution of B $\to \pi^+\pi^-$: 1=x, 2=y, 3=z

No significant difference in the vertex resolution

$B \rightarrow \pi^+ \pi^-$: summary

- best performance with small DCH inner radius:
 - $ightharpoonup \Delta E$ resolution improves up to 25%
 - ~2% (absolute) reco. efficiency increase
 - vertex resolution variation negligible

$B \rightarrow D^{*-}K^{+} : \Delta E$ resolution

DeltaE resolution of B→ D* K⁺

Trend similar to what observed in $B \rightarrow \pi\pi$

B→D*-K+: reconstruction efficiency

reconstruction efficiency of B→ D* K⁺

Trend similar to what observed in $B \rightarrow \pi\pi$

$B \rightarrow D^{*-}K^{+}$: vertex resolution

Vertex x/y/z-projection resolution of B→ D*K*: 1=x, 2=y, 3=z

Trend similar to what observed in $B \rightarrow \pi\pi$

$B \rightarrow D^{*-}K^{+}$: summary

- best performance with small DCH inner radius:
 - $ightharpoonup \Delta E$ resolution improves up to 20%
 - ~2% (absolute) reco. efficiency increase
 - vertex resolution variation negligible

Conclusions

- Configurations with smaller SVT and DCH radii give better performance...
- But other factors play a role in these studies:
 - (machine) backgrounds
 - pattern recognition (not included in FastSim, though some effects can be 'parameterized')
- We need to know the bkg rates

BACKUP

pi-: pt reso. [GeV/c]

pi-: σ(p)/pt reso.

pi-: theta reso. [rad]

pi-: theta reso. [rad]

pi-: phi reso. [rad]

pi-: phi reso. [rad]

