Fwd ECAL Simulation

SuperB Generla Meeting

Perugia
18/06/2009
C. Cecchi - S. Germani

INFN Perugia

- Fill the same BaBar angular region but
- leave space for TOF: $\Delta Z=(100$ $\mathrm{mm})^{*} \cos (22.7)$
- Xtals material : LSO (LYSO)
- Xtal depth $=200 \mathrm{~mm}\left(\sim 17.5 \mathrm{X}_{0}\right)$

Algorithm:

1. Get Xtal deposited energy
2. Perform Poisson smearing with 8 k pe/MeV
3. Assign 1% calibration error to crystals

- Reconstruct with $8 \mathrm{k} \pm 1 \% \mathrm{pe} / \mathrm{MeV}$

4. Apply minimum energy cut for each xtal

- 1 MeV to be tuned

5. Sum Xtal energy

Comments:

- All distributions have asymmetric low energy tails
- Backsplash for low E particles
- Forward leakege for high E particles
- Energy distributions fit with asymmetric Gauss function: $\sigma=\sigma(E)$

$$
F(x)=P_{0} e^{-\frac{\left(x-P_{1}\right)^{2}}{2\left[P_{2}\left(P_{3}-x\right)\right]^{2}}}
$$

$$
\begin{aligned}
& \text { •P1 : most probable value (mpv) } \\
& \cdot P 2(\text { P3-x) : running } \sigma
\end{aligned}
$$

- It seems the best thresold cut Is of the order of $100 \mu \mathrm{~m}$
- 1 mm cut does not seem to affect the resolution

Change in volume name

- Crystals position Index is identified by volume name
- Crystal names contained only theata index both for barrel and endcap
- The same volume was positioned in different phi positions to reach 2π coverage
- CopyNumber or ReplicaNumber seems not to work with GDML defined geometries
- Phi index was unknown at
- Solution:
- Define as many volumes as Phi positions and add phi index in the volume name

- Quick scan in theta angle to investigate the effect of Barrel-Fwd transition region and Fwd postion with respect to the barrel
- Backward alignemnt (room for Fwd PID)
- Front alignement

- The threshold cut scan seems to prefer a bit lower cut (100μ)
- The average results seems to agree with the standalone G4 simulation
- Further checks needed before performing complex studies

