

Fwd ECAL Simulation

SuperB Generla Meeting

Perugia 18/06/2009

C. Cecchi - S. Germani INFN Perugia

Fwd ECAL Geometry Envelop

- Fill the same BaBar angular region but
 - leave space for TOF: $\Delta Z = (100 \text{ mm})^*\cos(22.7)$
 - Xtals material : LSO (LYSO)
 - Xtal depth = 200 mm (\sim 17.5 X₀)

Energy Reconstruction

Algorithm:

- 1. Get Xtal deposited energy
- 2. Perform Poisson smearing with 8k pe/MeV
- 3. Assign 1% calibration error to crystals
 - Reconstruct with 8k±1% pe/MeV
- 4. Apply minimum energy cut for each xtal
 - 1 MeV to be tuned
- 5. Sum Xtal energy

Comments:

- All distributions have asymmetric low energy tails
 - Backsplash for low E particles
 - Forward leakege for high E particles
- Energy distributions fit with asymmetric Gauss function: $\sigma = \sigma(E)$

$$F(x) = P_0 e^{-\frac{(x-P_1)^2}{2[P_2(P_3-x)]^2}}$$

•P1 : most probable value (mpv)

•P2(P3-x) : running σ

Production thershold tuning

- It seems the best thresold cut Is of the order of 100 μm
- 1 mm cut does not seem to affect the resolution

Change in volume name

- Crystals position Index is identified by volume name
- Crystal names contained only theata index both for barrel and endcap
- The same volume was positioned in different phi positions to reach 2π coverage
 - CopyNumber or ReplicaNumber seems not to work with GDML defined geometries
 - Phi index was unknown at
- Solution:
 - Define as many volumes as Phi positions and add phi index in the volume name

Detector surveys (with geantinos)

6

Barrel only

Bruno vs standalone G4

Investigate Barrel-Fwd Transition Region

- Quick scan in theta angle to investigate the effect of Barrel-Fwd transition region and Fwd postion with respect to the barrel
 - Backward alignemnt (room for Fwd PID)
 - Front alignement

γ on last barrel crystal (I=48)

γ on first Fwd crystal (r=20)

Conclusions

- The threshold cut scan seems to prefer a bit lower cut (100μ)
- The average results seems to agree with the standalone G4 simulation
- Further checks needed before performing complex studies