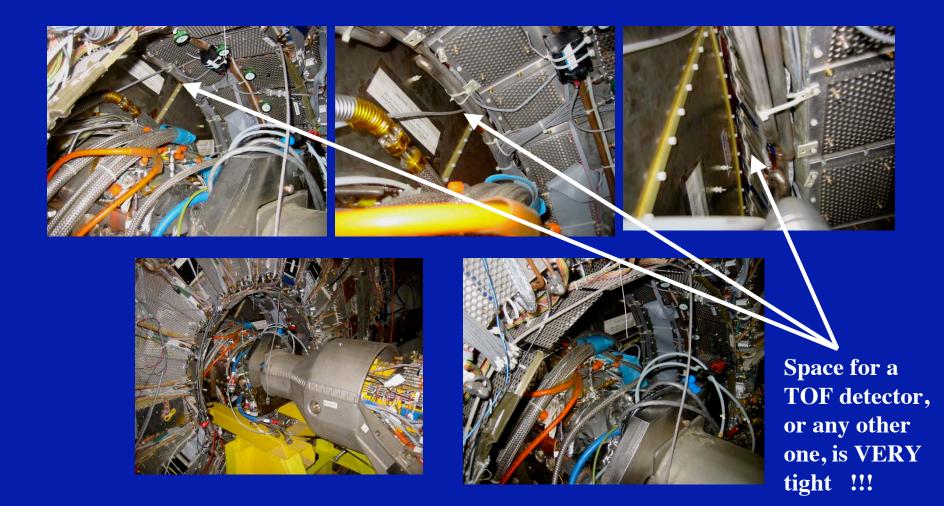
Geometry of forward TOF

J. Va'vra, SLAC

Light travels 300µm in one ps


Content of this talk

• Follow upon what I have said in my Orsay talk

- DIRC-like TOF

- TOF with cube radiators (run very low gain)

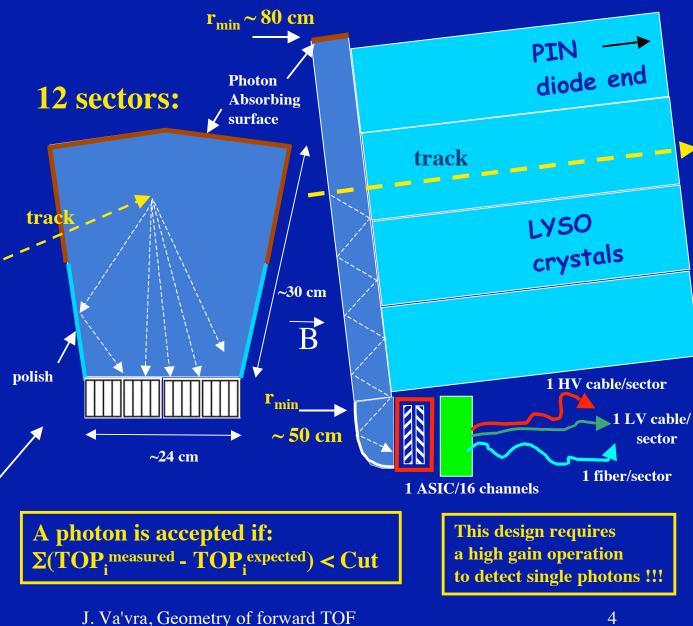
Changed my mind after inspecting the BaBar forward region a week ago

J. Va'vra, Geometry of forward TOF

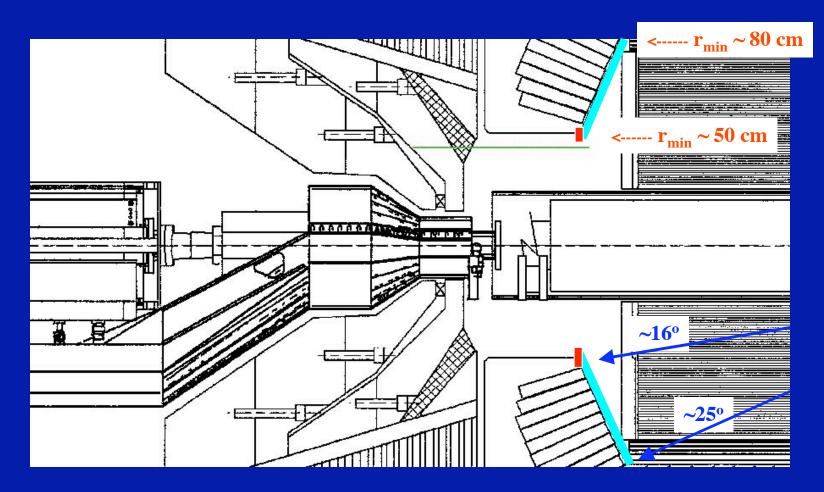
"DIRC-like" Forward TOF detector ?

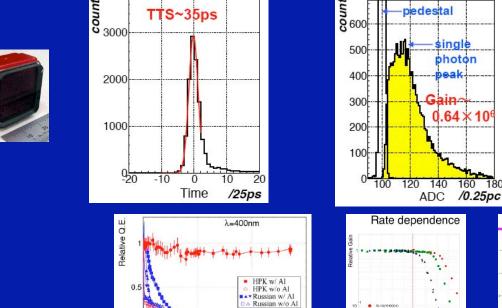
Sector:

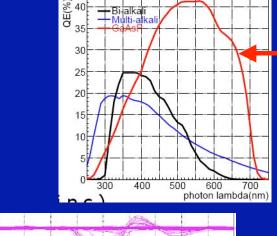
12 mm thick quartz bar Ave. photon path: ~15 cm 2 MCP tubes /sector 1 ASIC chips / sector 16 pixels / sector 1 fiber/ sector 1 HV cable / sector

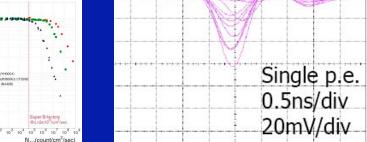

Total:

12 sectors - total 48 MCP-PMTs - total !!! Req.pos. accuracy: ~0.5 mm Hang it off EMC support ? $r_{min} \sim 50 \text{ cm} (\theta \sim 15\text{-}16^\circ)$ $r_{max} \sim 80 \text{ cm} (\theta \sim 25^{\circ})$ $\Lambda r \sim 30 \text{ cm}$


Hamamatsu MCP-PMT with strips and a protection foil:


Forward geometry with a DIRC-likeTOF counter




• What is the expected rate fin this location ?

"DIRC-like" Forward TOF detector is using the same photon detector as the TOP counter

(plots taken from K. Inami's talk about TOP counter at RICH 2007, Trieste & NIM A595(2008)96-99)

- Excellent TTS resolution

10

20 Integrated irradiation(x10¹³ photons/cm²)

> 10 Time in Super-B factory (year)

- Maximum rate: ~1 MHz/cm² with a 10µm hole MCP
- Protective foil does prevent the aging considerably, but Npe loss is a factor of 2

160 180

- GaAsP photocathode has much higher QE and in the "red" region
 - -> smaller chromatic effects -> better timing resolution

Expected performance

A photon is accepted if: TOP_i^{measured} - TOP_i^{expected} < Cut

$$\sigma \sim \sigma_{Electronics} \otimes \sigma_{Chromatic} / \sqrt{Npe} \otimes \sigma_{TTS} / \sqrt{Npe} \otimes \sigma_{T0}$$

Npe ~ 40-50/cm * 1/2 * 1/3 * 1.2 cm ~ 9
(Bialkali QE) (foil) (acceptance) (radiator thickness)
Assume:
 $\sigma_{TTS} \sim 35 \text{ ps}$, $\sigma_{Electronics} \sim 10 \text{ ps}$, $\sigma_{Chromatic} \sim 20 \text{ ps}$, $\sigma_{T0} \sim 15 \text{ ps}$

=> Expect: $\sigma \sim \sqrt{(10^2 + (20/3)^2 + (35/3)^2 + 15^2)} \sim 20 \text{ ps}$

Expected rates

SuperB expectation:

Track rate in the forward region: $\sim 2 \text{ kHz} / \text{cm}^2 \sim 6.3 \times 10^9 / \text{mm}^2 / 10 \text{ years}$

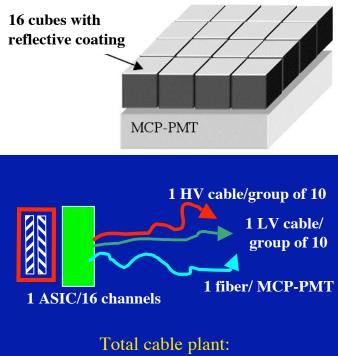
=> Expected pixel rate:

~ 2 kHz /cm² x 24 cm x 30 cm x (1/2) x (1/3x50) pe/track x (1/16) ~ 0.75 MHz/pixel

This may be pushing the MCP-PMT rate limit.

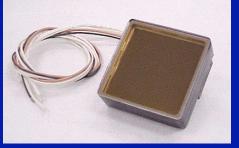
=> One may have to use pixilated approach

At the end, the only design which might work reliably is a highly pixilated type


"Pixilated" TOF counter running at low gain

Ouartz cubes radiators:

Photonis MCP-PMT with 64 pixels


Numbers:

10mm thick qtz radiator ~ 7200 quartz cubes - total \sim 7200 pixels - total ~ 450 MCP-PMTs - total 1 ASIC chips/MCP-PMT \sim 450 ASIC chips - total 16 pixels/MCP-PMT 1 fiber cable/ASIC ~ 450 fiber cables - total 1 HV cable/5 MCPs ~90 HV cables - total $r_{min} \sim 50 \text{ cm} (\theta \sim 15-16^{\circ})$ $r_{max} \sim 80 \text{ cm} (\theta \sim 25^{\circ})$ $\Delta r \sim 30 \text{ cm}$ Total area: ~ 12.300 cm² Req.pos. accuracy: ~0.5 mm Hang it off EMC support ? ~\$3k/MCP-PMT? ~ 1.35 M\$ - total detectors

- 450 fibers

- 50 HV & LV cables

Arguments for it:

- very low gain of ~2×10⁴.
- smaller aging rate ?
- good results in beam
- use <u>all</u> photons
- less complicated analysis

Arguments against it:

- more channels.
- Not sure that we can get cables out