
Abstract
We present the application of Support Vector Machines (SVM) toward identification of

noise transients in gravitational-wave analysis. SVM is a multivariate classification

method designed to handle a large number of parameters. Non-Gaussian noise transients

dominate the background for gravitational-wave transient searches and limit the

current sensitivity. SVM techniques allow us to use information from all available

auxiliary non-GW channels together to reject gravitational-wave noise transients due

to instrumental artifacts. We demonstrate the method and show performance on noise

transients in gravitational-wave data from LIGO's fourth science run.

Figure 1. The interferometers of the LIGO/Virgo network are 

located in Livingston, LA; Hanford, WA; and Cascina, Italy.

3. Feature vector generated from auxiliary 

channels

For each noise or signal sample, we generated a feature vector for the SVM

classification. Auxiliary channels measure non-GW degrees-of-freedom in the

instruments. Noise transients identified in the auxiliary channels using the kleineWelle

(KW) algorithm [3] indicate periods in time when there may be an instrumental

disturbance. For any specific GPS time (given by an event identified in the gravitational-

wave data, or a simulated event), we generate a single feature vector containing the KW

trigger properties of the closest noise transients identified in auxiliary channels within a

window of [-.25s, +.25s]. The feature vector at time t is denoted as V(t).

7. Performance of the SVM classifier

We can modify the weight in the object function (described in formula 2) to give a greater 

emphasis to positive noise identifications (increase efficiency) or minimize false rejection 

of simulated signals (reduce dead-time). The efficiency vs. dead-time measurements at 

many different tunings are shown below. 

. 

Shown here is a comparison with a classical fixed-window veto approach using the same 

auxiliary channel triggers and a hierarchal veto choice optimization scheme similar to that 

used by the LIGO S5 burst search [4]. The traditional single-channel fixed-window 

approach performs well at low dead-time, while the SVM has better maximum veto 

efficiency (where there are simply no more statistically significant single-channel vetoes to 

apply), indicating that the SVM may be particularly good at making use of information 

from many weak AUX channel triggers. 

6. Veto performance metrics
Efficiency: fraction (%) of GW triggers rejected. 

For the SVM classifier, veto efficiency is measured by the fraction the noise samples 

(generated from GW data) which are correctly classified as noise. 

Dead-time: fraction (%) of live-time lost due to veto application.

Because the SVM does not construct explicit veto intervals, we use an alternative 

definition of dead-time: the probability of dismissing a real event as noise. For the SVM, 

dead-time is measured as the fraction of random times (signal samples) which are 

misclassified as noise.
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4. SVM training and testing samples 

The SVM is used to classify events identified in the gravitational-wave data in a single 

instrument as either “noise” or “signal”. To generate the appropriate separating 

hyperplane, a set of training samples for both populations is needed.  Noise samples are 

produced by generating feature vectors about real transients identified in gravitational-

wave data (the overwhelming majority of non-coincidence gravitational-wave channel 

triggers are noise). Signal samples are produced by generating feature vectors about 

random times, simulating a random population of true signals. A separate set of testing 

samples is generated for measuring the performance of the trained SVM.

Noise Samples: 

Noise samples generated by running kleineWelle, a wavelet-based excess power method, 

on the gravitational-wave data from a single instrument. It is assumed that the 

overwhelming majority of these non-coincident triggers are noise fluctuations and not 

true gravitational waves. 

Signal Samples:

Signal samples are meant to resemble true gravitational-waves. Because we only use the 

single trigger central time from the gravitational-wave data to build our samples, we 

approximately model the signal population as a uniformly distributed set of random 

times within our analysis intervals. Separate training and evaluation sample feature 

vectors are built from auxiliary channel triggers about these times, with the exception 

that for training purposes, a feature vector must not be zero (must contain at least one 

nearby auxiliary channel noise trigger). Zero feature vectors are automatically classified 

as signal, and provide no useful training information.

1. Vetoes for Gravitational-Wave Searches

Current gravitational-wave searches are dominated by background – random 

coincidences of noise artifacts in the data. One technique to remove background events 

during data analysis involves making use of information from auxiliary channels to 

identify non-GW induced disturbances in the instruments and thus remove them. Support 

Vector Machines (SVM) provides a technique to handle the hundreds of degrees of 

freedom this auxiliary information provides and use it to efficiently classify noise events.

2. SVM (Support Vector Machine)

SVM is a statistical classification method which is good at classifying high-dimension 

sparse samples. In this case we use the SVM to separate noise events caused by 

instrumental artifacts from simulated signal samples resembling gravitational-wave 

observation. In general, the SVM works by finding a maximum-margin hyperplane to 

separate samples in a transformed space, defined by the kernel function, as shown in 

figure 2. The SVM algorithm has the following steps:

1. Map the non-linearly-separable sample set to a different high-dimension space. The 

map is defined by the kernel function, and the goal of the map is to make the 

classification linearly separable (the two classes are separated by a single hyperplane). 

2. If the issue is still not linearly separable, slack variables        are introduced to quantify 

the misclassification of the data xi . 

3. Find the maximum-margin hyperplane to separate the samples in kernel space. 

Formula 1. General form of hyperplane :

Formula 2. Find hyperplane and        which minimizes:

Formula 3. subject to the constraint for all i:

In our experiments, we use a Gaussian kernel function:

Formula 4.
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5. Experimental data and configuration

We use the LIGO S4 data from GPS 793152013s to 793756813s (first 7 days beginning 

Feb 23, 2005) from each of the three interferometric detectors: H1, H2, and L1. We use a 

KW significance threshold of 35 for all GW triggers to select moderately loud noise 

transients. Additional thresholds, shown below, are placed on the auxiliary channel 

triggers to ensure no hardware injections are vetoed. This is a safety requirement to make 

sure the auxiliary triggers we use for vetoes do not correspond to true gravitational waves.

We use 400 signal samples and 400 noise samples to train the SVM classifier and over 

1000 samples of each to test performance of the SVM. The dimensions of the feature 

vectors for H1, H2 and L1 are 108, 96 and 102 respectively.

Figure 4.a. H1 auxiliary 

channels and 

significance threshold

Figure 4.c.L1 auxiliary 

channels and 

significance threshold

Figure 4.b. H2 auxiliary 

channels and 

significance threshold

Figure 3. Sample feature vectors for noise events are generated by 

collecting auxiliary channel trigger properties near the time of the 

GW noise trigger.
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The feature vector for one 

sample contains properties 

of all the nearby auxiliary 

channel triggers such as:

1) dt, the time difference 

between the sample time 

and the auxiliary channel 

trigger time

2) frequency of the auxiliary 

channel trigger

3) signal strength and 

statistical significance of the 

auxiliary channel trigger
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Software:

LIBSVM: is an integrated software for support vector classification, (C-SVC, nu-SVC), regression 

(epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). 

8. Future work

We will continue to mature the algorithm, testing different feature vector parameters, 

training samples, and kernel functions, and we plan to apply new multivariate veto 

classification schemes such as the SVM to current S6 data from the LIGO/Virgo network.
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Figure 5.a. Veto 

efficiency vs. dead-time 

for H1 noise events

Figure 5.b. Veto 

efficiency vs. dead-time 

for H2 noise events

Figure 5.c. Veto 

efficiency vs. dead-time 

for L1 noise events
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