Proposal for LIGO-Virgo Triggered Follow-Up with High Energy Photon Survey Missions

Jordan Camp

NASA Goddard Space Flight Center

John Cannizzo, Alexander Stroeer, Alessandra Corsi, Elena Cuoco, Ettore Majorana, Lindy Blackburn

> GWDAW 14 Jan 27, 2009

ASA GODDARD SPACE FLIGHT CENTER

Motivation for High Energy Sky Search

- In S6/VSR2 run, LIGO-Virgo is entering an era of "plausible detection"
- A coincident EM signal will offer independent support to any GW claim of detection
 - GW triggered surveys may find prompts or afterglows
 - Triggers allow EM searches below nominal thresholds
- A number of NASA missions are now surveying the high energy sky
 - RXTE
 - SWIFT
 - FERMI

- L-V provides trigger
 - Time, Sky position
 - Frequency of ~ once per week of loudest trigger
- Using above information, missions will search for excess power <u>below</u> transient threshold
 - Search in time interval of +/- 2 minute (prompt emission)
 - Search in time interval of 3 hour (afterglow)
 - Search at L-V sky position of 25 sq deg
 - Search at L-V sky position of 5 deg annulus
 - All will help to reject EM background
- Data is analyzed off-line no spacecraft commands (ie, no repointing, no threshold change, etc)

Real motivation for this external collaboration

- Although detection of a gravitational wave from a GRB or SGR in S6/VSR2 is possible, it is not likely, so that probably the best motivation for this proposal is to gain experience in interacting with the high energy astrophysics community, which will be useful in the era of advanced LIGO-Virgo. We have taken measures to make this clear to the EM survey missions.
- We intend to be very conservative in analysis
- Still significant enthusiasm from the missions!

High Energy Photon Survey Satellites

Mission	Instrument	Energy	FOV	Δθ	$\Delta T_{transit}$
RXTE	All Sky Monitor	1 – 10 keV	3 %	< 1°	1.5 hour
SWIFT	Burst Alert Telescope	20 – 150 keV	15 %	< 1°	NA
FERMI	Gamma Burst Monitor	20 keV – 40 MeV	65 %	5°	3 hour
FERMI	Large Area Telescope	20 MeV – 300 GeV	20 %	< 1°	3 hour

Rossi X-ray Timing Explorer (RXTE)

ASM Energy range 1-10 keV

ASM rotates through sky every 1.5 hours

Look below nominal ASM threshold using L-V trigger

NASA GODDARD SPACE FLIGHT CENTER

SWIFT

BAT trigger requires both high photon rate and SNR_{image} > 6.5 Rate ~1/3 day

L-V triggers (time, sky position) will allow us to look at subthreshold images for which SWIFT does not slew

Looking at SWIFT events with sub-threshold images

LAT and GBM have trigger thresholds ~ 10 x noise

LAT tracking chamber

GBM multiple oriented scintillators give FOV ~ 65%

FERMI scans sky every 3 hours

Looking below LAT, GBM thresholds

GODDARD SPACE FLIGHT CENTER

EM Instrument trigger rates

Mission	Instrument	Threshold	Rate (/day)
RXTE	ASM	2 σ	30
		3 σ (nominal)	2
SWIFT	BAT	2.5 σ	100
		6.5 σ (nominal)	0.3
FERMI	LAT	4σ	1
		5σ (nominal)	0.1
FERMI	GBM	4 σ	10
		5σ (nominal)	1

EM-GW False Alarm Rates (/yr) L1, H1, V1 (H1, V1)

Mission	Instrument	EM-GW False Alarm Rate		
		Prompt	Afterglow	
RXTE	ASM	10-4	10-2	
		(10-2)	(1)	
SWIFT	BAT	10 ⁻⁵	10 ⁻³	
		(10-3)	(10-1)	
FERMI	LAT	10 ⁻⁶	10 ⁻⁴	
		(10-4)	(10-2)	
FERMI	GBM	10 ⁻⁵	10 -3	
		(10 ⁻³)	(10 ⁻¹)	

Assumes R_{L-V} = 1/yr and 30 times nominal EM trigger rate

ASA GODDARD SPACE FLIGHT CENTER

- RXTE: Jean Swank (Project Scientist), Ron Remillard (ASM PI).
- SWIFT: Neil Gehrels (Project Scientist), Hans Krimm (BAT detector scientist)
- FERMI LAT: Dave Thompson (Deputy Project Scientist), James Chiang, Vlasios Vasileiou (LAT detector scientists)
- FERMI GBM: William Paciesas (PI), Valerie Connaughton, Michael Briggs (GBM detector scientists)
- Lots of enthusiasm!

Possible Joint Detection Scenario

- There has been considerable discussion recently on the criteria to announce a GW detection
- I discuss a hypothetical detection scenario for discussion
 - Virgo NS-NS observation with sensitivity 40 Mpc
 - LIGO NS-NS observation with sensitivity 20 Mpc
 - EM coincidence with NASA photon survey mission
- I hope this may stimulate some discussion on the LIGO side about the possibility of the continued allocation of one detector to S6

Effect of EM coincidence on detection threshold (from P. Shawhan)

- With EM counterpart, we can (roughly) have scenario of 2 detectors with effective sensitivities of 40 Mpc

 Background rate of 1 / 100 yr
- Best estimate of CBC rate at this sensitivity is ~ 1 / yr
- This assumes EM counterpart is not missed because of beaming
 - Searching below nominal detector thresholds may help
- A gravitational wave seen in coincidence by 2 detectors years before "advanced era" could be valuable to growth of international field

- NASA EM survey missions are very interested in joint EM-GW search
 - RXTE, SWIFT, FERMI
- A joint detection would add significant confidence to any claim by LIGO – Virgo
- Hope to begin analyzing data in coming months

