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Technological outlook:
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Technological outlook:

Most important chip semiconductor makers are working in order to solve
problems related to integration scale. Several deep changes in processors
architectures have been applied to the CPU generations of last 10 years,
introducing several level of parallelism, from SSE to multi core.

During next years, that evolutive process will continue in a even more deep
manner, moving CPU processor architectures to the so called *Many-core” era
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Next 15 years and
Einstein Telescope computing

* In the manycore era, computing power will be distributed across thousands
cores, interconnected by several hierarchical cache levels and complex bus
subsystem.

* Express the expected performances of these new architectures require a
comp]ete different programming models and algorithms.

* Performances achievable are not a priori predictable, depending on:
*  The specific problem algorithms
* Memory/registries architecture model
e Inter communication

* Serial portion of the algorithm (ref. Amdahl’s law)

* Third generation of gravitational wave detectors, like ET, need to deal with this
technology in order to address their scientific goals

* Currently, Graphics Processing Unit or GPU are the firsts devices that map the
manycore definition with interesting performance characteristics. For that, has
been defined the concept of General Purpose computing (GPGPU)
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" culnspiral: h
GPU CB library prototype

d culnspiral was under develop in Virgo/ET INFN Perugia in 2009, using
CUDA framework of NVIDIA, now merged in MaCGO (Manycore
Computing for future Gravitational Observatories) INFN experiment.

The first library implementing a high arithmetic intensity strategy on
GPU for coalescing binaries DA., where all computation is made completely

inside GPU space.

JSome functions currently implemented:

= Taylor PN2 generator

* Normalization

= Matched filtering

=  Maximum identification

=  QOther complex vector operations

@ Dr. Leone B. Bosi — INFN Perugia — Einstein Telescope project - MaCGO experiment




A

(-,

Layout of the culnspiral CB pipeline
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culnspiral:
PN2 template generation [ performance |

Template generation performance
generator PN2 single precision on GPU (GTX 275) and CPU(Intel E6550@2.33GHz)
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" CUDAFFT vs FFTW:
proc time | GFlops (single precision)

GPU/CPU FFT performances
processing time and GFlops
CUDAFFT vs FFTW single precision on GTX 275
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Host&—> Device
Memory |/O overhead

GPU Performance test
FFT single precision - memcpy - GTX 275
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culnspiral:

PN2 template and FFT Accuracy

Template generation error
GPU/CPU mismatch % - Time/FFT comparison
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Pipeline profiling:

* If we consider analysis parameters of :

* low.cutof.freq:24Hz,
* vector length 2720, fs=4kHz the

* The culnspiral processing rate on GTX 275 and Tesla is roughly of:

30 templates/sec (ower limit)

* If we consider the online constrain processing with 6000 templates,

we can estimate detection phase analysis can be performed with a

couple of GPU Class GTX280.

Pipeline Gain respect CPU>x50

with GTX 275/Tesla

—>expected with Fermi GPU:
—->x100-150

Multi-GPU configuration: x DevN

project - MaCGO experiment
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" culnspiral:
pipeline performance vs GW detectors
generations

culnspiral benchmark
processing time per template vs vector size
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ET era, computing power requirements

and manycore solutions.

o Given a template bank for ET, we can define to truncate critical long
inspiral by chosing properly the low frequency cut-off (g4

o With this choice we can reduce the max template length for this analysis

step - 3600s

o 2000000 templates (lemgth=2hours(@4kHz), today using a culnspiral
GPU like library to process a single timeslice we require: 2000000 x 0.8
s—18 days, with a normal CPU 1.5 years!!

o If we renormalize respect to estimated gain factors, such as: FFT code
optimization, Moore’s Law and loss factor (@2020 forecast)

3x100%0.4=120 we obtain
24 hours to process ET like data

o It seems plausible that by 2020 computing innovation we will be able to
pursue ET requirements for this task.
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Conclusions

o CuInSpiral is a prototype library developed in INFN Perugia to perform and evaluate
high arithmetic intensity computation on GPU about CB data analysis.

Oy 1 . .. : :
** This work is in the perspective of the so called “manycore era”, important for ET
purposes.

*3* With this version we have reported preliminary performances on a full CB detection
pipeline on these new architecture (on nvidia GTX275). In particular:

J . . . .
%* Gain factor X100 about templates generation respect to identical CPU

implementation. (This factor is expected to be roughly constant also for higher PN approximation or
others generators).

*3* Gain factor X60 about FFT, using cuFFT library, but in the close future, new cuFFT
versions promise to have X120-180 or more.

** Number of X30-35 templates processed per seconds with vector size= 220

o . : . . : .
*°* It has been reported how the cuInsplral approach permit to obtain very impressive gain
from these manycore architectures.
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