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The detection of cosmological gravitational waves (GW) produced in 
the early Universe would be a major breakthrough in cosmology and 
high-energy physics. 

The basic reason for this is that GWs decouple from the primordial 
plasma at T ~ MPl ~ 1019 GeV, and thus give a “snapshot” of the 
Universe as it was at the time of their production (since this usually 
occurs at T < MPl !). 

Several scenarios of the early Universe predict the production of 
gravitational waves, through a variety of physical processes:  

!   Inflation (amplification of vacuum fluctuations) 

!   String Cosmology  (amplification of vacuum fluctuations) 

!   Cosmic strings  (oscillation of closed string loops) 

!   Phase transitions  (bubble collisions, turbolence) 
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LIGO and VIRGO collaborations, Nature 460, 990 (2009) 
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  The GW spectrum has to be propagated until the present time 

 The source term on the RHS of Einstein eqn. is the anisotropic part of the stress 
tensor, and vanishes in the case of a perfect fluid. It is thus a (at least) first order 
quantity in the framework of cosmological perturbation theory. 

 As a rule of thumb, we have that πij is proportional to the mean free path of particles. 

  Then the main contribution to the anisotropic stress (AS) is due to neutrinos, since 
they are the most weakly interacting particles. The Universe is filled by neutrinos, with 
a number density of the order of the number density of the CMB photons. 

  Weinberg (Phys. Rev. D 69, 023503, 2004) has computed the effect of neutrino AS 
on the propagation of gravitational waves on a FRW background, for frequencies 
relevant to the CMBR. 

 In that regime, neutrinos are effectively collisionless, i.e. C[f] = 0. 

 We want to explore the regime in which collisions should be taken into account. 
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Mathematical Procedure: 

!   Write the distr. function of neutrinos as an equilibrium, zeroth order 
part + a small perturbation δf(x, q, t) 

!   Fourier transform the spatial dependence; 

!   Integrate to eliminate the dependence from the neutrino momentum; 

!   Expand the Boltzmann equation over Legendre polynomials in order 
to eliminate the residual angular dependence; 
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τweak= 1/(GF
2 T5)	
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  The main effect of the interaction is that the amplitude of the wave is damped by 
a factor D 

  The damping depends on two parameters: the neutrino density  fν  = ρν / ρtot and 
the frequency of collisions 1/τc 

  In the early Universe, in the case of constant  fν   and without collisions, D is 
indepedent from the frequency of the GW. 

  Neutrino collisions set up at T~1 MeV, i.e ν∼6 x 10-10 Hz 

  In general, hc(f)     D(f) hc(f)  and  Ωgw(f)     D(f)2 Ωgw(f) 
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For fν = 0.4, the amplitude of wave is 
damped by 10% (20% in intensity) wrt to 
vacuum propagation. For fν = 1, the 
damping is 25% (50% in intensity). 
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 At T~1 MeV, the Universe undergoes a “phase transition” 

  For T>> 1 MeV, the Universe is a plasma of photons, electrons, positrons 
and neutrinos that are kept in thermal equilibrium by the electromagnetic and 
weak interactions; 

  At T ~ 1 MeV, the weak interactions “freeze-out” and the cosmological fluid 
is made by two components: a photon,e+e- plasma on one side, and the 
neutrino (collisionless) gas on the other; the two components, althoug not in 
thermal contact, have the same temperature 

  Sligthly below, 1 MeV, the e+ and e- annihilate mainly to photons and heat 
the photon component that is then hotter than the neutrinos; 

  The frequency of a wave entering the horizon at T~1 MeV is between 10-10 
and 10-9 Hertz 

  The region between 10-9 and 10-7 Hz can be probed by pulsar timing 
techniques. 
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This is how a flat spectrum at the source (normalized to high frequencies) 
would appear now, after GW propagation across the Universe. 
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Ωgw(f) = D(f)2 Ω0
gw(f) = D(f)2 A fα	



Δα = dlog[D(f)2]/dlog[f]	



Deviation from a power law behaviour 
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Can we see this feature? (A theorist’s view) 

  A large enough cosmological signal should be present in the nHz range (cosmic 
strings?); 

  An independent confirmation at larger frequencies (interferometers) would be useful 
(also to “normalize” the signal); 

   The cosmological GW background should be larger than the astrophysical 
background (BH binaries); or, the latter should be removed; 

  Frequencies below 1 nHz should be measured, the smaller the better. At f=1/(100 
years), the damping is just 5%. The largest change in slope occurs at f ~ 0.1 nHz ~   
~ 1/(300 years). Large times of observations would also introduce problems related to 
the timing stability; 

  One should have enough frequency resolution and sensitivity to the signal to do a 
proper characterization of the spectrum.  
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  The production of gravitational waves is a prediction of several early Universe 
scenarios. 

  The spectra predicted from these scenarios differ very much. 

  Cosmological GWs DO NOT propagate in vacuum, since they interact with the 
anisotropic stress of the cosmological fluid (i.e. its effective viscosity). A source of 
anisotropic stress are the free streaming background neutrinos. 

  The interaction of GWs with cosmological neutrinos results in a damping of the 
wave intensity, amounting to 50% at most. This damping is not so severe to 
prevent primordial GWs to be detected today. 

  The thermal evolution around T ~ 1 MeV (z ~ 1010) (i.e. neutrino decoupling 
and e+e- annihilation) would leave a distinct imprint on any cosmological signal in 
the sub-nHz range. 	


  To explore that frequency range with PTAs  would require ~ 100 years. 

  However, neutrinos are not the only possible source of anisotropic stress (e.g. 
magnetic fields).... 

  .... and the thermal history of the Universe is largely unknown!!! 
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BACKUP SLIDES 
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Theoretical predictions: 

!   De Sitter Inflation 

Flat spectrum for f > feq ~ 10-16 Hz 

1/f 2 spectrum for f < feq 

Typical intensity: h0
2Ωgw ~ 10-13 (H / 10-4 MPl)2 

Correction for slow-roll: 

Small tilt |nT|~1 in the “flat” region: 

!   String Cosmology 

Almost flat spectrum for f  > fs ~ ? 

f 3 spectrum for f  < fs  

Typical intensity: h0
2Ωgw ~10-13 - 10-4 
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Theoretical predictions: 

!   Phase Transitions 

The spectrum is usually peaked at a single frequency f0 (e.g.,   f0 ~ 4 x 
10-3 Hz for EW phase transition)  

Strongly first order transitions are needed 

 ε ~ 1 is excluded (optimistically, ε ~ 10-2) 

Typical peak intensity:   h0
2Ωgw ~ 10-5 ε2 x suppression factors 

!   Cosmic Strings 

Flat spectrum for 10-8 Hz < f  <  1010 Hz 

Peak in the region f ~ 10-12 Hz  

Typical intensity:   h0
2Ωgw ~ 10-8 - 10-7 
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Interaction of Cosmological GWs with neutrinos 
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M. Maggiore, Phys. Rept. 331 (2000), 283 
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Siemens, Mandic & Creighton, PRL 98, 111101 (2007) 
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