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Abstract

GW burst detection pipelines such as the Omega pipeline searches for
“locally stationary”signals (i.e, with slow variations ofthe frequency).
This assumption translates into the use of a family of templates (sine-
Gaussians) with constant frequency. However we can identify a number
of scenarios in which the burst frequency evolves rapidly. For instance,
this is true for the merger part of the coalescence of a black hole and/or
neutron star binary. In those cases, standard sine-Gaussian families
lead to losses in performance due to the mismatch between thetemplate
and the actual signal. We propose an extension of the Omega pipeline
based on chirplet-like templates. Chirplet are characterized by the chirp
rate, an additional parameter that controls the frequency variation. We
construct a template bank which covers the new parameter space and
show that the Omega pipeline can be easily adapted to chirplets. We
illustrate the method with examples using simulated data.

1 Motivations

The searches of impulsive gravitational waves focus es-
sentially on two types of waveforms: short unmodelled
bursts and longer quasi-periodic signals from inspiralling
black hole and/or neutron star binaries as predicted by post-
Newtonian approximations. The range of possible GW sig-
nals may extend beyond those two categories. We consider
here intermediate GW target signals (we refer to as “chirp-
ing bursts”) that exhibit characteristics from both the above
categories (i.e., short duration; “sweeping” frequency).
We propose here an extension of the Omega pipeline [1]
(originally known as the Q pipeline) that searches for chirp-
ing bursts. The Omega pipeline projects the data over a
family of sine-Gaussian templates (with fixed frequency).
The idea is to replace these templates by frequency varying
waveforms referred to aschirplets.
In this poster, we first define chirplets. We then build tem-
plate banks of chirplets from which we obtain thechirplet
transform. We discuss the implementation of the chirplet
transform and its insertion into the Omega pipeline. We
finally show few examples using simulated data.

2 From wavelets to chirplets

Chirplets are defined as follows

ψ(τ + t) = A exp

(

−(2πf )2

Q2
τ 2
)

exp
(

2πi
[

fτ + d/2 τ 2
])

with A = (8πf 2/Q2)1/4 so that
∫

|ψ|2 = 1.
The difference wrt sine-Gaussian templates is an additional
term in the phase (evidenced in red) that let the chirplet
frequency vary linearlyf (τ + t) = f + dτ with slope or
chirp rate d. Chirplets are thus associated with a four-D
parameter space instead of three for sine-Gaussians.
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Figure 1: Example of a chirplet

3 Building template banks with chirplets

Let themetric µ be the second-order approximation of the
mismatch variation [2] between templates for small dis-
crepancy in the parameter value. The metric in the chirplet
space reads:a

µ =
Q4d2 + 16π2f 4

4Q2f 2
δt2 +

2 +Q2

4f 2
δf 2 +

δQ2

2Q2
+

+
Q4

128π2f 4
δd2 − Q2d

2f 2
δtδf − δfδQ

Qf
.

The extra terms (in red) are due to the non-zero chirp rate.
We deduce that chirplets require a finer time samplingδt ∝
f/(Qd) for smallf . Q

√
d wrt sine-Gaussian whereδt ∝

Q/f and that the sampling step for the chirping rate scales
with δd ∝ (f/Q)2.
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aThis calculation assumes that the detector is white. Contrarily to the sine-Gaussian case, this

approximation has significant effect since the chirplet frequency varies across the detector bandwidth.

The parameter space can be covered with equispaced
chirplet templates [2] (the distance being defined by the
above metric). As an example, Fig. 2 shows the set of
chirplets resulting from such covering.
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Figure 2: Example of a chirplet family resulting from
the template placement procedure.

In Fig. 3, we apply the resulting template placement
scheme in two different settings. About a factor of 10 more
templates are needed to cover the whole parameter space
for chirplets as compared to sine-Gaussians.
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Figure 3: Size of the chirplet template bank in two
cases: (left) assuming chirp rate limits between±dmax

uniformly in frequency; ( right) assuming frequency
dependent limits consistent with the Newtonian model

of the inspiralling binary chirp i.e.,
CM

5/3
minf

11/3 . d . CM
5/3
maxf 11/3.

3.1 Sine-Gaussian vs. chirplet manifolds

To understand the advantages of a chirplet-based analysis,
we assume here that the GW signature is a chirplet and
we correlate this signal against a sine-Gaussian template
bank. Consistently to the metric estimate, the loss in SNR
is
√
128πf 2/(dQ2) ∼ 0.5 in the present case and the max-

imum correlation is shifted to lowerQ which thus yields a
bias on the estimation of this parameter.
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Figure 4: Correlation measurement between a chirplet
and a sine-Gaussian template bank.

4 Chirplet transform

4.1 Definition

The chirplet transformT is obtained by correlating the data
with the chirplet template bank which, in the frequency do-
main is performed as follows:

T (θ) =

∫

X(ξ)Ψ∗(ξ;θ)dξ,

where X and Ψ denotes the Fourier transform of the
(whitened) data stream and chirplet, resp.θ is a descriptor
that contains the chirplet characteristicsθ = {t, f,Q, d}.
The chirplet Fourier transform can be expressed as

Ψ(ξ; θ) = A exp

(

−Q̃
2

4

(ξ − f )2

f 2

)

,

whereA = ((Q̃4/Q2)/(2πf 2))1/4 is written in terms of a
“complex-valued” quality factor̃Q = Q

√
z/|z| wherez =

1 + id∆2
t with the chirplet duration∆t = Q/2

√
πf .

4.2 Filtering procedure

The modulus ofΨ(·) is a Gaussian function as in the sine-
Gaussian case. This similarity allows the use of the same
filtering scheme as Omega to generate the chirplet trans-
form defined above.

In brief, Omega’s scheme operates in the frequency domain
and consists in multiplying the Fourier transform of the data
(computed with the FFT algorithm) with that of the tem-
plates and take the inverse Fourier transform (with FFT) of
the product. Omega uses a bi-square frequency window that
approximates the Gaussian shape. The compact support of
the bi-square window prevents aliasing.
This scheme can be applied to the chirplet case with the
difference that the templateΨ is now complex and that we
need to multiply the data spectrum both in modulus and
phase.

4.3 Pre- and post-processing

In the single-detector network we concentrate on here,
most of the pre- and post-processing can be borrowed
from the standard Omega. The pre-processing of the in-
strumental data essentially consists in whitening the in-
put data stream. The post-processing consists in select-
ing among the chirplets that partially overlap in time and
frequency the one associated with maximum correlation
with the data. Time-frequency tiles are associated to each
chirplets. They are defined by[t ± ∆t/2, f ± ∆f/2] where
∆t is the chirplet duration and its frequency bandwidth is
∆f = 3

√

(1/∆t)2 + (d∆t)2. Two chirplets overlap if their
time-frequency tiles overlap.

5 “Chirpletized” Omega scan

As an illustration, we show here the result of the application
of the pipeline to a short segment of simulated random noise
(which mimics the spectral characteristics of Virgo noise)
where we injected a fake gravitational wave signal (an in-
spiralling binary chirp). We show side by side the result of
the standard Omega pipeline and that of the “chirpletized”
version.
Chirplets with a positive slopes are preferred to sine-
Gaussian with constant frequency. This gives indication on
the frequency evolution of the eventa posteriori. Also, the
significance of the most significative chirplet is increased
(∼ 5% in this example) wrt that of the most significative
sine-Gaussian because of the better fit.

Figure 5: (top/left) Inspiralling binary signal in
simulated noise (top/right) Spectrogram (bottom/left)
Eventgram for standard Omega (using sine-Gaussian

templates only) (bottom/right) Eventgram for
“chirpletized” Omega (using chirplets)

6 Status and future plans

The single-detector network search code is ready and it
can be downloaded [3] and used to produce “chirpletized”
Omega scans. More work is needed to extend the method to
multiple-detector networks (with e.g., Bayesian follow-up).
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