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Outline of the talk

 Data preparation

 Formulation of the problem

 The signal and the noise

 The algebra of the 5-vectors

 The detection problem

 The parameter estimation problem

 The Coherence: reliability of the detection

 Extension to sub-periods or more antennas analysis



Data preparation
Band extraction, by constructing the analytic signal, over bands of 

~0.1Hz

Doppler and spin-down correction

Removal of residual time periods which are particularly noisy

Wiener weighting: we weight the noise data with the inverse of their 

local variance, to reduce the effect of non-stationary noise 



The formulation of the problem

There are two cases:

• we know the polarization parameter and so we should estimate 
the amplitude and the phase of the wave (2 d.o.f. problem). The 
detection of the phase and amplitude modulated signal is done with 
a matched filter in the space of the five signal Fourier components.

• we don’t know the polarization parameters, so we should estimate 
also them (4 d.o.f. problem). The detection is more complex.



The wave
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If the polarization ellipse has semi-axes a ≥ b, with the convention to put b 

positive if the circular part is L (CCW) and negative if it is R (CW).  

The two polarization parameters are                , defined in the range    -1≤η≤1 
(0 if linear polarization)

and the polarization angle ψ (direction of the axis a of the ellipse)

tensors in arial



Invariants and inverse problem
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Invariants: functions which do not depend on the unknown parameter   



The antenna response
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(α,δ) source coordinates, λ and a the latitude and azimuth of the antenna; 
Ω·t = α-Θ,   where Θ is the sidereal time.

fast modulation

slow modulation (phase and amplitude)



The 5-vectors (the signal)
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The two polarization 
signals 5-vectors A+ and Ax

with components:
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The “generator” 5-vector:
from 5 complex numbers 
it generates the time 
response

The signal 5-vector

The antenna response
(analytic signal)
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Basic problems:

Detect the presence of the signal 

Signal parameters estimation

Reliability of the detection

Extension of the procedure to more antennas and/or to 

the analysis in sub-periods of time 



The 5-vectors (the data)
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The data 5-vector

The “real signal” 5-vector

w(t) is the “Wiener filter”, if it is used in order to optimize for the non-
stationarity of the noise.
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The 5-vectors (the signal)
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The 5-vector of the signal could in principle be constructed 

analytically from this equation  , but this is not what we do, 

because it is important to generate a signal with the whole 

procedure applied to the data, that is the same cuts, vetoes, 

Wiener  weights.

We thus create the 5-vect  S (case of 2 d.o.f.)  or its two plus 

and cross components (case of 4 d.o.f.) and then operate on it 

exactly as we do on the noise.



Why use the 5-vectors ?
It is immediate to understand that operating with this framework gives a big gain 
in computation speed. This is mainly in the case of the simulation of many source 
injections, not precise frequency search (in fact  the signal 5-vect
does not depend on the frequency), different analysis, and so on.

In the case of the matched filter for the Vela pulsar during VSR1 (the reduced data 
were about 107 samples) the gain is of the order of 1 million. And without any loss in 
performances.

We should compute at the beginning only the three 5-vectors:  the two for the 
basic signals (plus and cross) and one for the data. 

Data 5-vect: the Fourier components at the 5 frequencies
Noise background 5-vect:  from one FFT and a comb with the 5 lines we get many 
noise realization
Signal 5-vect:  a linear combination of the two plus and cross 5 vectors:  
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The detection (2 d.o.f. case)
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The detection (4 d.o.f. case)
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The two basic observables are

The matched filter          is the weighted mean of  the two basic componentsh

But we don not know  a and b !



Detection statistics: basic observables
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Detection statistics and its optimization
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linear combination of the 2 
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Some cases



Detection statistics

Ratio of the two modes: 1Ratio of the two modes: 3

simple mean  (blue)                           F statistics  (red)
Best ROC statistics  (green)             Best SNR statistics  (black)



Detection statistics: the distribution
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 is the F-stat case, that is equalization of the two 

plus and cross modes



Estimation of source parameters: basic relations
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Estimation of source parameters
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Estimation of the amplitude

Invariants

Estimation of η

Estimation of ψ

Estimation of the 
absolute phase

(these are independent on the absolute phase  )



Estimation of the source parameters
Simulation for (η,ψ)=(0.3,30⁰)      Antenna latitude 5⁰      Source declination -5⁰      

Amplitude  



Estimation of the source parameters
Simulation for (η,ψ)=(0.3,30⁰)      Antenna latitude 5⁰      Source declination -5⁰      

0.3



Estimation of the source parameters
Simulation for (η,ψ)=(0.3,30⁰)      Antenna latitude 5⁰      Source declination -5⁰      

30 deg



Estimation of the source parameters
Simulation for (η,ψ)=(0.3,30⁰)      Antenna latitude 5⁰      Source declination -5⁰      

Standard 

deviations

  green
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amp blue



Reliability of the detection: the coherence 
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Noise only: it follows a beta distribution 
(experimental result)

c does not depend on scaling factors on the signal. It 

depends only on the signal shape

Not the standard definition of coherence. 

It indicates a coherence between the signal shape and the data.

It is not a function, but only a single number.



Reliability of the detection: the coherence 

coherence

Distribution

absence of noise

Green: 2 d.o.f.

Red: 4 d.o.f.

In the 2 d.o.f. case the coherence is more stringent, in the 4 d.o.f. case 

it is not so stringent



Extension of the method: use of the 5n-vectors

• Detection with more than one antenna: each antenna produces 5 components 
for the signal vector and for the data vector

• Sub-interval analysis: to enhance the reliability of the detection, the 
observation period can be divided in sub-periods, and each of them gives 5 
components for the signal vector and for the data vector.

•It should be useful to divide the observation time into small pieces to get more 
information from the analysis: e.g. is the signal always present or not ?



Use of the 5n-vectors (both 2 and 4 d.o.f.)

are  5n vectors (data, signal and noise)  and defining 
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ρ remains the same,  while   -see next slide-



the coherence, using 5n-vect, in absence of signal 
decreases with n 

Blue: n=5

Red: n=10

Green: n=15

For SNR<<1      c  1/n; For high SNR     c=1 


