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Figure 1: Principal strategy of combining PN and NR results, here presented
for our Fourier-domain procedure to obtain a phenomenological model of the
entire waveform.

The detection of gravitational waves (GWs) from a coalesc-
ing black-hole binary and the extraction of astrophysical in-
formation requires accurate template waveforms that model
this process.
To construct complete waveforms, post-Newtonian (PN) re-
sults for the inspiral part can be combined with data from
non-perturbative numerical relativity (NR) simulations that
model the late inspiral, merger and ringdown. These simu-
lations are computationally expensive and there are various
approaches to eventually obtain an analytic description of the
entire signal [5, 6].
However, before such an analytic fitting can take place, PN
and NR results have to be combined in a hybrid waveform
– the accuracy of this procedure limits the reliability of all
further results.
Here, we are concerned with the basic errors in the construc-
tion of hybrid waveforms: matching error, model errors and
combination error, as explained in the following sections.

Analysis tools

The distance of two waveforms h1(f ) and h2(f ) is given by

‖∆h‖2 = 4

∫ ∞
0

|h1(f )− h2(f )|2

Sn(f )
df , (1)

where f is the Fourier frequency and Sn is the noise spectral
density of the detector. The global phase and time-shift of
h2 is chosen to minimize ‖∆h‖. We further normalize by
the square of the signal-to-noise ratio of h1, which reads

ρ2 = 4

∫ ∞
0

|h1|2

Sn(f )
df . (2)

Following [1] we can conclude

•h1 and h2 are indistinguishable if ‖∆h‖ < 1.

• ‖∆h‖2 < 2ρ2 ε is accurate enough for detection purposes
with a maximal mismatch of ε.

The NR waveforms used throughout this poster are sim-
ulations for mass-ratio 1:1 and 1:2 performed with a full
general relativistic multipatch code [2].

Matching Error
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Figure 2: Aligning the PN and NR data in Fourier space. The 3.5PN (Fourier) phase
needs to be fitted to fix the global phase and time. There is no freedom in aligning the
3PN [8] and NR amplitude.

Aligning the PN and NR part of the waveform usually involves some
sort of fitting procedure to fix the global phase and time. In our Fourier
domain example, two free parameters (t0 and φ0) of the TaylorF2
phase [9] have to be determined by a least-square-fit to the NR phase.

Figure 3: The statistical fitting error of the
phase parameter φ0 for different fitting win-
dows.

The location of the fitting win-
dow depends on the length and
quality of the NR waveform as
well as on the statistical uncer-
tainty in determining the fitting
parameters. Analyzing these fit-
ting errors of the parameters al-
lows us to find a preferred window
which is a compromise between

• fitting/matching at early fre-
quencies (times) where PN is
more reliable.

• fitting in a range where a con-
siderable evolution of the or-
bital frequency of the binary al-
lows an accurate determination of free parameters.
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Figure 4: The normalized distance of
two hybrid waveforms that differ in the
fitting window for the phase.

Fig. 3 illustrates how the fitting uncer-
tainty of φ0 behaves as a function of
the fitting window location and width.
The minimal errors we find are of the
order ∆φ0 ≈ 0.03 and ∆t0 ≈ 0.3.
However, even with such small param-
eter errors there are several possible
fitting windows which lead to slightly
different hybrid waveforms. How differ-
ent these waveforms are is shown in
Fig. 4, where an “optimal” early and
long window is compared against a late
and short one (indicated in Fig. 3).

Model Error

Both the PN and NR description of the
wave signal are subject to errors of differ-
ent kinds. Although there are estimates of
amplitude and phase errors for NR wave-
forms (see e.g. [2, 3]), we estimate them
here by comparing different resolutions of
an equal mass [2], Cauchy-characteristic ex-
tracted waveform [4] as ingredients for the
hybrid waveform.
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Figure 5: Distance of hybrids that differ only in

the NR part. The grid spacings of the different reso-

lutions are h = 0.64 (high), 0.80 (med), 0.96 (low).

The errors introduced by different PN de-
scriptions (especially in the matching re-
gion) are hard to quantify a priori. We es-
timate them here by keeping the NR wave-
form (mass-ratio 1:2) and the matching re-
gion fixed and varying the PN order of the
TaylorF2 phase.
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Figure 6: Distance of hybrids that differ only in

the PN part. Different orders are compared to the

3.5PN phase hybrid. As a lower limit, the 3-3.5PN

distance of matching to the currently longest equal

mass waveform [7] is included.

⇒ Figs. 5 and 6 suggest that errors intro-
duced by different models in the applied pro-
cedure are dominated by PN uncertainties.

Combination Error
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Figure 7: Identifying phys-
ical parameters.

Combining parts of the wave signal in-
volves identifying physical quantities
such as the symmetric mass ratio η or
the total mass M both in PN and NR.
These quantities are difficult to com-
pare and it is not obvious that various
definitions lead to the same results in
dynamical spacetimes.
Instead of using the horizon-based measure for η that NR predicts
as input for PN, one may as well fit for the corresponding value,
similarly to what is done for φ0 and t0.
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Figure 8 : Determining η by fitting TaylorF2 to the NR phase.

The best-fitted value we find is η ≈ 0.2045 which is 8% smaller
than expected from the NR simulation. This deviation may well
be mostly due to PN uncertainties, see section Model Error and
[10]. However, if fundamental differences in the definitions lead to
different values, this has to be considered in the construction of
hybrid waveforms. We (over)estimate this effect by the distance of
the conventional hybrid (physical quantities not fitted) to a hybrid
where

• the PN value for η is fitted to NR

• the quotient of the total masses is fitted for given η.

In the second case we find MNR/MPN ≈ 0.97. The optimal fit-
ting window is always defined by the minimum of the statistical
parameter error, see the left panel of Fig. 8.
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Figure 9: Distance of the conventional hybrid (physical parameters not

fitted) to hybrids with additionally fitted values.
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