

Stochastic backgrounds of GWs from extragalactic sources

Raffaella Schneider INAF-Osservatorio Astrofisico di Arcetri

Stefania Marassi, Valeria Ferrari Università di Roma – La Sapienza

Why stochastic backgrounds from extragalactic sources?

Foreground noise for GW signals emitted in the primordial Universe

Cumulative emission of different sources at early cosmic times

- \rightarrow Insights on GW sources
- \rightarrow Constraints on distant stellar populations

Cosmic star formation history: the observational view

Recent collection of observations by Hopkins & Beacom (2006)

Cosmic star formation history: the observational view

Hubble Ultra-Deep WFC3 observations: star formation density out to z = 10!

GWs from stellar remnants

* core collapse supernovae

 $m_{star} > 20 M_{sun} \rightarrow collapse to BH (Stark & Piran 1985-1986)$

 $8 M_{sun} < m_{star} < 20 M_{sun} \rightarrow NS$ r-modes instability (Andersson 1998; Owen et al. 1998)

* collapse to VMBHs of very massive stars

* GWs from inspiraling compact binaries

Stochastic backgrounds: early predictions

Stochastic backgrounds: early predictions

Ferrari, Matarrese, RS (1999a)

Ferrari, Matarrese, RS (1999b)

RS, Ferrara, Ciardi, Ferrari, Matarrese (2000)

RS, Ferrari, Matarrese, Portegies Zwart (2001)

Stochastic backgrounds: additional studies

Buonanno et al. (2005) Farmer & Phinney (2003) Regimbau & de Freitas Pacheco (2006) Regimbau & Chauvineau (2007) Sandick et al. (2006) Sesana, Vecchio & Colacino (2008)

Formation of Pop III/Pop II stars

Population III stars: form at z = 20 - 30 in the dark matter mini-halos ($10^{6}M_{sun}$)

Yoshida et al. 2006

 $30 M_{sun} < M_{ch,star} < 100-300 M_{sun}$

Abel et al. (2000-2002); Bromm et al. (2001); Yoshida et al. (2006); O'Shea & Norman (2007); Gao et al. (2007); Turk et al. (2008); Tan & McKee (2003-2005)

Population II/I stars:

 $M_{\rm ch,star} \approx 1 \ M_{\rm sun}$ Salpeter initial mass function $0.1 \ M_{\rm sun} < M_{\rm star} < 100 \ M_{\rm sun}$

Pop III/Pop II transition is controlled by metal/dust enrichment

 $10^{-6} Z_{sun} < Z_{cr} < 10^{-4} Z_{sun}$

Bromm et al. (2001); RS et al. (2002, 2003, 2006); Bromm & Loeb (2003); Santoro & Shull (2006); Omukai et al. (2005); Tsuribe & Omukai (2006); Clark et al. (2008); RS & Omukai (2009)

numerical simulations

Tornatore, Ferrara & RS (2007)

GADGET-2 (Springel et al 2005)

Improved treatment of chemical enrichment (Tornatore et al 2007)

 $L_{box} = 10h^{-1} \text{ Mpc} \qquad N_p = 2 \times 256^3 \qquad M_p = 3.6 \ 10^6 \ h^{-1} \ M_{sun}$ ACDM model $\Omega_m = 0.24 \ \Omega_\Lambda = 0.76 \ \Omega_b = 0.041 \ h = 0.73 \ n = 1 \ \sigma_8 = 0.8$

2 additional runs:
$$L_{box} = 5 h^{-1} Mpc$$
 $N_p = 2x256^3 M_p = 4.5 10^5 h^{-1} M_{sun}$
 $5 h^{-1} Mpc$ $N_p = 2x128^3 M_p = 3.6 10^6 h^{-1} M_{sun}$

star formation history

- Pop III stars continue to form well beyond the epoch at which <Z> > $\rm Z_{cr}$
- Pop II stars are always the dominant SF mode: 1% of the stars at z=14 are Pop III
- Additional suppression of Pop III stars is caused by the IGM photo-heating due to reionization $z_{rei} \approx 7$

Single source GW emission

 \checkmark Pop II stars 8 M_{sun} < m_{star} < 20 M_{sun}

Core collapse SN leading to NS remnant $E_{GW} \approx 1.8 \times 10^{-8} M_{sun} c^2$ (Muller et al. 2004)

Oscillations of proto-neutron star: g-modes emission

$$\mathbf{E}_{\text{GW}} \approx \begin{cases} 1.4 \text{ x } 10^{-8} \text{ M}_{\text{sun}} \text{ c}^2 \text{ for a } 15 \text{ M}_{\text{sun}} \text{ progenitor} \\ 8.2 \text{ x } 10^{-5} \text{ M}_{\text{sun}} \text{ c}^2 \text{ for a } 25 \text{ M}_{\text{sun}} \text{ progenitor} \end{cases}$$
(Ott et al. 2006)

NS collapse of Pop II stars

Single source GW emission

✓ Pop II stars $8 M_{sun} < m_{star} < 20 M_{sun}$

Core collapse SN leading to NS remnant $E_{GW} \approx 1.8 \times 10^{-8} M_{sun} c^2$ (Muller et al. 2004)

Oscillations of proto-neutron star: g-modes emission

$$\mathbf{E}_{\text{GW}} \approx \begin{cases} 1.4 \times 10^{-8} \,\text{M}_{\text{sun}} \,\text{c}^2 \,\text{ for a 15} \,\text{M}_{\text{sun}} \,\text{progenitor} \\ 8.2 \times 10^{-5} \,\text{M}_{\text{sun}} \,\text{c}^2 \,\text{ for a 25} \,\text{M}_{\text{sun}} \,\text{progenitor} \end{cases} (\text{Ott et al. 2006})$$

 \checkmark Pop II stars $20~{\rm M_{sun}}{<}\,{\rm m_{star}}{<}\,100~{\rm M_{sun}}$

Prompt/delayed BH formation of rotating massive cores

 $E_{GW} \approx 2 - 3 \ge 10^{-7} M_{sun} c^2$ for 50 – 75 M_{sun} progenitors (Sekiguchi & Shibata 2005)

Single source GW emission

✓ Pop II stars $8 M_{sun} < m_{star} < 20 M_{sun}$

Core collapse SN leading to NS remnant $E_{GW} \approx 1.8 \times 10^{-8} M_{sun} c^2$ (Muller et al. 2004)

Oscillations of proto-neutron star: g-modes emission $E_{GW} \approx \begin{cases}
1.4 \times 10^{-8} M_{sun} c^{2} \text{ for a 15 } M_{sun} \text{ progenitor} \\
8.2 \times 10^{-5} M_{sun} c^{2} \text{ for a 25 } M_{sun} \text{ progenitor}
\end{cases}$ (Ott et al. 2006)

✓ Pop II stars 20 $M_{sun} < m_{star} < 100 M_{sun}$ Prompt/delayed BH formation of rotating massive cores $E_{GW} \approx 2 - 3 \times 10^{-7} M_{sun} c^2$ for 50 - 75 M_{sun} progenitors (Sekiguchi & Shibata 2005)

 \checkmark Pop III stars $~100~M_{\rm sun} < m_{\rm star} < 140~M_{\rm sun}$ and 260 $M_{\rm sun} < m_{\rm star} < 500~M_{\rm sun}$

Collapse to BHs of comparable mass (no mass loss at Z = 0):

$$\mathbf{E}_{GW} \approx \begin{cases} 2 \times 10^{-3} \,\mathrm{M_{sun}} \,c^2 & \text{Fryer et al. (2001)} \\ 2 \times 10^{-4} \,\mathrm{M_{sun}} \,c^2 & \text{Suwa et al. (2007)} \end{cases}$$

BH collapse of Pop III stars - Suwa et al. (2007)

Stochastic backgrounds from PopIII/PopII stars

Formation of SMBHs from direct collapse of a SMS

formation of a $\approx 10^6 M_{sun}$ black hole in a proto-galaxy at z ≈ 10

The galaxy metallicity must be $< Z_{cr}$ where Omukai, RS, Haiman (2008) $Z_{cr} = 5 \ 10^{-6} Z_{sun}$ with dust $Z_{cr} = 10^{-4} Z_{sun}$ with gas metals only

GW emission from SMS collapsing to SMBHs

Upper limit on the SMBH formation rate: the present-day observed SMBHs density

$$f_{\text{smbh}} \int_{M_{\min}(z=10)}^{\infty} \frac{\mathrm{d}n(M, 10)}{\mathrm{d}M} M_{\text{smbh}}(M) \,\mathrm{d}M \leq 4.3 \times 10^5 (h/0.7)^2 \,\mathrm{M_{\odot}Mpc^{-3}}$$

Merloni & Heinz (2008)

SMBHs collapse GW emission: (Saijo et al. 2002; Shibata & Shapiro 2002; Liu et al. 2007)

 $\label{eq:EGW} \begin{array}{l} \mbox{Single burst modeled as a Lorentzian centered on f = $c/10Rg$ (RS et al. 2000) \\ E_{GW} \approx $2 \times 10^{-5} \ M_{smbh} \ c^2$ (Fryer et al. 2001) \\ \end{array}$

Stochastic backgrounds: new predictions

comparison with previous work

comparison with previous work

astrophysical vs primordial backgrounds

observability

observability

observability

