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Scientific Motivations
Detection dilemma in “single shot” observations:  

confidence has at least two sides

A. establish confidence of on-source measurements against the off-
source by frequentist statistical methods

⇒ goal is to exclude an accidental origin of the on source⇒ goal is to exclude an accidental origin of the on-source 
result

f fB. evaluate confidence by folding in all our additional knowledge 
after the fact with the widest possible agreement in the community

⇒ evidence to discriminate among possible sources of the 
result

⇒ additional confidence on the non accidental origin ? 
difficult

Must do our best on side A, life can be very controversial on side B
H t b ild ti t f ff
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How to build on-source estimator from off-source
measurements ?
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Testing On-source vs Off-source
transient signal searches require to

design the counting experiment
build the reference distribution of accidental eventsbuild the reference distribution of accidental events

off-source reference
understand uncertainties ...

select test statistics (e.g. Signal-to-Noise Ratio, other)
find on-source results (issue of search blindness...)
rank on-source results against accidental referencerank on source results against accidental reference

estimate the false alarm rate

t d d ti lid t h istandard time slides technique
time shift data of detectors in the network
repeat the analysis

reference distribution for accidental events
critical issues:

biases in off-source reference
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biases in off-source reference 
uncertainties 
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Time slides
C i tiCommon prescriptions:

autocorrelation time of single detectors
minimum time shift step  O(1s) limit number 

f ti lidnon stationary timescale of single detectors
maximum time shift   O(1h)

check for pollution by foreground or signal events in the network

of time slides

p y g g

time coincidence searches: time-shift events
see Poster by

coincidence window

same coincidences cannot repeat in different time slides

M. Wasshift step > coincidence window
event clustering time

by construction ⇒ time slides give independent events

coherent searches: time-shift data streamscoherent searches: time-shift data streams
same network event may repeat itself with negligible differences in 
different time slides (multiple events) ⇒ correlation among different 
time slides is possible even with independent detector noises
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time slides is possible even with independent detector noises
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Time slides in Coherent Searches
SCexample: all-sky searches with LSC-Virgo detectors 

sensitivity of detectors changes a lot according to direction & polarization. 
RATIO of ANTENNA PATTERNS Virgo/LHO

white <0.1, red > 10

coherent analyses weigth each data stream according to directionalcoherent analyses weigth each data stream according to directional
and spectral sensitivity of detectors

⇒ a full range of possibilities between two extremes 

same network events show up in 
different lags: 

“highly correlated lags”

network events are not 
repeated in different lags:

“independent lags”
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highly correlated lags
(multiple events)

independent lags
(unique events)
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Multiplicity of Background
lti l b k d tli t f l t d t k tmultiple background outliers - set of correlated network events 

produced by the same underlying event 
e.g. for 3 detectors network: same pair of “parent” glitches in any 2 

detectors may produce outliers in different time slides

count their multiplicities as a function of the threshold on the chosencount their multiplicities as a function of the threshold on the chosen 
ranking statistic

● worst case: max multiplicity  of● best case: independent outliers
outliers ⇒ m = Nlag

nbk = p m = p Nl p # of parents

min multiplicity, m = 1
nbkg background outliers in Nlag lags
⇒ expected counts for on-source: nbkg = p m = p Nlag p # of parents⇒ expected counts for on source:

bkgbkg
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equivalent to perform just 1 lag
background estimation does not

all lags are effective in 
improving background 

laglag NN NN laglag
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background estimation does not 
depend on Nlag

g g
estimation
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Best case: “unique lags”
Smarter choices of time slides: lower multiplicity ↔ smaller σ

set of unique lags: never repeat relative delays between the same pair of 
detectors in the non zero lags ⇒ lags of the set are independentdetectors in the non zero lags ⇒ lags of the set are independent

PRO: no multiple network events ⇒ BEST USE of LAGS
CON: limited number of lags; for 3-detectors network ≈ few 1000s
build large background samples with low multiplicity by combining several sets 
of disjoint unique lags

examples of 
sets of unique lags:

o grid of possible different lags ay
-2

for a 3 detectors network
(2 independent time delays)• a set of unique lags

de
la

a set of unique lags  • another set of unique lags
the two sample sets are disjoint, but 
resulting accidentals are in general
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resulting accidentals are in general 
correlated between the sets
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i t di t

Time Slides in Practice
intermediate cases: 
nbkg background outliers in Nlag lags
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● shift only one “weak” detector

histograms of multiplicity

● 10 sets of 100 unique lags

histograms of multiplicityg p y
toy model Nlag=1000

histograms of multiplicity
toy model Nlag=1000

nbkg = 900 ± 700
nbkg = 350 ± 90

nbkg = 170 ± 24
nbkg = 160 ± 21
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multiplicity and estimation
Smarter choices of time slides: lower multiplicity ↔ smaller σ

Hi t f f l ti t i ti id t l t tHistogram of rms of relative uncertainties on accidental event counts

toy model: 
1000 simulations of accidental 

counts with mean = 100
• 1000 unique lags m=1 :1000 unique lags, m=1 :

Poisson behavior
• 10 disjoint sets of 100 unique 

lags, m≤10 : almost Poisson
• 1000 lags with higher 

multiplicity e g shifts ofmultiplicity, e.g. shifts of 
“weak” detector, larger sigma 
and asymmetric (right tail 
produced by rare events with
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produced by rare events with 
high multiplicity)



One More Choice: Random Lags

select lags randomly with uniform prob. from the set of possible lags
approaches the efficiency of unique lags: small multiplicitiesapp oac es t e e c e cy o u que ags s a u t p c t es

effective # of lags available is approx Nlag / (mean multiplicity)
allows to produce large background data samples

f funiform sampling of the time slides space ⇒ robustness against 
systematics 

no bias in the background estimation because lags are selected 
in a blind way

both unique lags and random lags are currently implemented in coherent 
WaveBurst pipelineWaveBurst pipeline
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Summary

estimation of the accidental background of coherent data analysis 
methods poses a new issue: time slides can be correlated 
correlation can be measured by counting the multiplicity by which 
the same parent events generate more network events in different 
time slides
ultiplicity increases the statistical uncertainty of the accidental 
background estimates, without adding a new source of bias if time 
slides are performed in a blind wayslides are performed in a blind way.
the choices of the lag set affect the background multiplicity:

unique lags: independent but limited number
more disjoint sets of unique lags: larger statistics available
set of random lags: low multiplicity, highest statistics is possible, 
uniform sampling of the lag spaceuniform sampling of the lag space
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