Joint searches of gravitational waves (GW) and high-energy neutrinos (HEN)

Eric Chassande-Mottin (CNRS, APC, France) for the LIGO Scientific Collaboration and the Virgo Collaboration

Gravitational waves and High Energy Neutrinos

GW and HEN as cosmic messengers

• *no absorption/diffusion*: travel "cosmological" distances as opposed to photons (dust, gaz, MW or IR background)

• *no deflection* by magnetic fields: trace back (as opposed to charged cosmic rays)

• weakly interacting: escape from dense objects

Potential GW+HEN sources

Requirements

- Massive, compact, relativistic $(\rightarrow GW)$
- Sudden <1s (\rightarrow LIGO/Virgo)
- Baryons (\rightarrow neutrino)
- Close/frequent enough

- Galactic
 - Soft γ repeater
 - Micro quasar
- Extra-galactic
 - Long GRBs
 - Short GRBs
 - Low-lumin. GRBs

GW+HEN sources (1): GRBs

Fireball model: colliding relativistic shells

accel. electrons produce gamma rays by synchrotron

accel. protons interact and produce pions, which decay in **high-energy neutrinos HEN**

caveat: Fermi observations puts the "internal shock model" in troubles. Basic scenario under reconsideration

GW+HEN sources (2) : "failed" GRBs

• Why GRB jets are relativistic? (compactness pb)

non-relativistic: optical depth due to absorption $\gamma\gamma \rightarrow e^{-}e^{+} \gg 1$ includ. relativistic effects, optical depth is x $\Gamma^{-22\alpha}$ (Lorentz fact.) optically thin if $\Gamma = O(100)$, required to see flash of γ -rays

- Baryon (heavy) pollution → mildly relativistic jet Γ = O(1) optically thick, photon don't escape! No GRB. ("failed") more baryons means more neutrinos
- Events hidden from conventional telescopes accessible only to GW+HEN observation unknown rate, could be large

GW+HEN sources (3): connection between SN and GRB?

	SN	"Failed" GRB	GRB
Energy	10 ⁵¹ erg	10 ⁵¹ erg	10 ⁵¹ erg
Rate/gal	~10 ⁻² yr ⁻¹	10 ⁻⁵ -10 ⁻² yr ⁻¹	~10 ⁻⁵ yr ⁻¹
Г	~	~3–100	~100–10 ³
en from Ando (2	Barion rich Nonrelativistic Frequent	Similar kinetic energy	Baryon poor Relativistic jets Rare

missing link between SN and GRB?

Common data sets with HEN telescopes

Feasibility: basic ingredients

ANTARES & GW det.

Sky coverage

- ANTARES and IceCube sky complementary
- Each have ~30 % common sky with GW det.

Resolution of source localization

- ANTARES has sub-degree error box
- IceCube has ~ degree error box
- GW network has few degree error box

Exploring possible data analysis strategies

• GW and HEN = same search style

few small signal buried in background noise

 rationale for a coincidence search : independent detectors : prob. of accidental coincidence (backgrounds) is very low if coinc. observed, high confidence in detection

• first studies initiated within LIGO/Virgo and Icecube and independently within ANTARES

detect an excess of time/spatial coincidence

reduce false alarm rate, dig deeper into background

Y. Aso et al. APS'08 arXiv:0711:0107v2 Pradier arXiv:0807.2567v1

Investigate the use of X pipeline currently used for burst searches in coincidence with GRB

Coincidence time window

- Time delay between GW and HEN
- Source/model dependent
- Case study: long GRBs (Bartos et al.)

GW emission is prompt

Neutrinos emission simultaneous to $\boldsymbol{\gamma}$

GRB duration as indicator for time window: <~ 150 sec (from 4th BATSE catalog)

• GRB may be preceded by precursor

final window is [-350, +200] sec

 Reconsider this window in light of Fermi observations (low statistic for now)

Conclusions

- Working group joining GW and HE neutrinos (IceCube and ANTARES) just formed
- In the process of signing data exchange agreement
- Individuate scenarios for potential joint sources
- Propose procedure for the time/spatial coincidence of GW and HEN events
- Pathfinder effort for advanced detectors