"Super-sky" Parameter-Space Metric

 for Coherent Continuous-Wave Searches
Abstract

The parameter-space metric of coherent searches for continuous gravitational waves is generally non-constant, due to the components involving the signal's sky position. This long-standing problem greatly complicates (i) template placement, (ii) coincidence schemes, and (iii) estimating the number of templates. We show that extending the 2D sky to a 3-dimensional "supersky" yields a constant metric in the embedding space. This formalism can help with (i)-(iii).

Definition of the CW metric

Unknown "Doppler" parameters λ : sky-location \tilde{n} of the source, intrinsic frequency f and spin-down parameters f, ..
Note: $|\widetilde{\mathbf{n}}|=1$ is a unit-vector pointing to the sky-location of the source.

Signal phase $\Phi(t)$ is approximately [1]:

$$
\begin{equation*}
\Phi(t ; \lambda) \approx 2 \pi\left[f t+f \frac{\widetilde{\mathbf{n}} \cdot \mathbf{r}(t)}{c}+\frac{1}{2} \dot{f} t^{2}+\ldots\right] \tag{1}
\end{equation*}
$$

The metric $[2,3]$ measures relative loss m of SNR^{2} due to an offset $\Delta \lambda$ in Doppler-parameters from signal-location λ_{s} ("mismatch"):

$$
m \equiv \frac{\operatorname{SNR}^{2}\left(\lambda_{s}\right)-\operatorname{SNR}^{2}\left(\lambda_{s}+\Delta \lambda\right)}{\operatorname{SNR}^{2}\left(\lambda_{s}\right)}
$$

Taylor-expanding this for small offsets $\Delta \lambda$ defines the metric tensor $g_{i j}$:

$$
m=g_{i j}\left(\lambda_{\mathrm{s}}\right) \Delta \lambda^{i} \Delta \lambda^{j}+\mathcal{O}\left(\Delta \lambda^{3}\right)
$$

The metric tensor $g_{i j}$ can be computed approximately [4] as

$$
g_{i j}\left(\lambda_{s}\right) \approx\left\langle\partial_{i} \Phi \partial_{j} \Phi\right\rangle-\left\langle\partial_{i} \Phi\right\rangle\left\langle\partial_{j} \Phi\right\rangle
$$

in terms of phase-derivatives $\partial_{i} \Phi \equiv \partial \Phi / \partial \lambda^{i}$ and where $\langle Q\rangle$ is the time-average of $Q(t)$ over the observation time T :

$$
\langle Q\rangle \equiv \frac{1}{T} \int_{0}^{T} Q(t) d t
$$

Phase variation in natural units

We use rescaled quantities, namely

$$
t \rightarrow \frac{t}{T} \quad \mathbf{r}(t) \rightarrow \frac{\mathbf{r}(t)}{R_{\mathrm{orb}}}
$$

measuring t in units of the observation time T and \mathbf{r} in units of the orbital radius $R_{\text {orb }}$. Similarly we rescale the Doppler parameters as

$$
f^{(s)} \rightarrow \frac{2 \pi}{(s+1)!} f^{(s)} T^{s+1}, \quad \widetilde{\mathbf{n}} \rightarrow \widetilde{\mathbf{n}}^{\prime} \equiv \frac{2 \pi}{c} \bar{f} R_{\text {orb }} \widetilde{\mathbf{n}}
$$

and so we can now write the variation $d \Phi(t ; \lambda)$ of the signal-phase (1) as

$$
\begin{equation*}
d \Phi(t ; \lambda) \approx t d f+\mathbf{r}(t) \cdot d \widetilde{\mathbf{n}}^{\prime}+t^{2} d \dot{f}+\ldots \tag{2}
\end{equation*}
$$

Metric structure

The metric $g_{i j}$ has a block-structure in the 2 "sky"-components $\widetilde{\mathrm{n}}$ and the $s_{\text {max }}$ "spin" components $f^{(s)} \in\{f, f, \ldots\}$:

Spin metric

The metric in the "spin" components $\lambda^{s} \in\{f, \dot{f}, \ldots\}$ is easy to compute analytically, and is found to be constant:

$$
g_{s s^{\prime}}=\left\langle t^{s^{s} t^{s^{\prime}}}\right\rangle-\left\langle t^{s}\right\rangle\left\langle t^{s^{\prime}}\right\rangle=\frac{(s+1)\left(s^{\prime}+1\right)}{(s+2)\left(s^{\prime}+2\right)\left(s+s^{\prime}+3\right)}
$$

Sky metric

The metric involving "sky" components \widetilde{n} involves integrations over the detector-motion $\mathbf{r}(t)$, and generally varies over the sky:

Figure: Sky iso-mismatch ellipses (yellow) over the sky-sphere (blue) $|\mathbf{n}|=1$, for different observation times T, at fixed frequency $v \equiv f\left(1+\mathbf{V}_{\text {orb }} \cdot \widetilde{\mathbf{n}}\right)$.
The varying sky-metric complicates template placement, coincidence schemes over the sky and estimating the number of templates.

"Supersky" metric

We formally relax the constraint $|\widetilde{\mathbf{n}}|=1$, allowing the sky-vector n to have 3 independent components $\left\{n^{x}, n^{y}, n^{z}\right\}$. This 3D-embedding of the 2D sky-sphere greatly simplifies the expressions for the supersky-metric components, namely

$$
g_{l^{\prime}}=\left\langle r_{l} r_{l^{\prime}}\right\rangle-\left\langle r_{l}\right\rangle\left\langle r_{l^{\prime}}\right\rangle
$$

which is constant over the full extended parameter space for any observation time T. The same is true for the mixed sky-spin components of the metric, which have the form $g_{l s}=\left\langle r_{l} t^{s}\right\rangle-\left\langle r_{l}\right\rangle\left\langle t^{s}\right\rangle$. The curved sky-metric is obtained by restricting the supersky to the 2D sky-sphere:

Figure: Supersky iso-mismatch ellipsoids (red) and their restriction (yellow) to the sky-sphere (blue) $|\mathbf{n}|=1$, for different observation times T, at fixed frequency v.

Discussion

Supersky-metric is constant over extended parameter space! sky-metric obtained from simple projection onto 2D sky-sphere simple coincidence scheme over whole parameter-space
allows estimation of number of templates using "flux" formalism

References

- [1] Jaranowski, Królak, Schutz, PRD 58, 063001 (1998)
- [2] B. Owen, PRD 53, 6749 (1996)
- [3] R. Balasubramanian, et al., PRD 53, 3033 (1996)
- [4] R. Prix, PRD 75, 023004 (2007)

