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Abstract Sky metric

The parameter-space metric of coherent searches for continuous gravitational waves The metric involving “sky” components n involves integrations over the

is generally , due to the components involving the signal’s sky position. detector-motion r(t), and generally over the sky:

This long-standing problem greatly complicates (i) template placement, (ii)

coincidence schemes, and (iii) estimating the number of templates. We show that
the 2D sky to a 3-dimensional “supersky” yields a in the

embedding space. This formalism can help with (i)-(iii).

Definition of the CW metric

Unknown “Doppler” parameters A: sky-location n of the source, intrinsic frequency f
and spin-down parametersf, ...
Note: [n| = 1 is a unit-vector pointing to the sky-location of the source.

Figure: Sky iso-mismatch ellipses (yellow) over the sky-sphere (blue) [n| = 1, for different observation
times T, at fixed frequency v = f(1 + Vo - ).

Signal phase ®(t) is approximately [1]: The varying sky-metric complicates #== template placement, == coincidence schemes
- aor(t) 1. over the sky and = estimating the number of templates.
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Supersky” metric
The [2, 3] measures relative loss m of SNR? due to an offset A\ in
Doppler-parameters from signal-location A (“mismatch”): We formally relax the constraint [n| = 1, allowing the sky-vector n to have
SNR2()\.) — SNR2()A. + AM) indepenc.:lent components {nx,. nY,n*}. This 3D-embedding of the 2D sky-sphere
m = SNRE(\] greatly simplifies the expressions for the supersky-metric components, namely
Taylor-expanding this for small offsets A\ defines the metric tensor g;; : g = {nrw) — (r){rv)
. i A A3 which is over the full parameter space for any observation time T.
. m = gij(As) AN A}\. T O(AN) The same is true for the mixed sky-spin components of the metric, which have the
The metric tensor g;; can be computed approximately [4] as form g = (rit°) — (1)) (#°). The curved sky-metric is obtained by restricting the
gii(As) = (0,0 9;D) — (9;D)(0,D) supersky to the 2D sky-sphere:

in terms of phase-derivatives 9;® = 0®/0\' and where (Q) is the time-average of
Q(t) over the observation time T

Phase variation in natural units

We use rescaled quantities, namely

t r(t
I — — r(t) — (t)
T Rorb
measuring t in units of the observation time T and r in units of the orbital radius Ryyp.

Similarly we rescale the Doppler parameters as

2T 27T
(s) _ (s)s+1 n—n =-""_ n
f /(S_l_l)'f T / n_>n—CfRorbn/
and so we can now write the variation d®(t; A) of the signal-phase (1) as
AdO(H ) ~ tdf +r(t) -dn’ +t2df + ... (2)

Metric structure

The metric g;; has a block-structure in the 2 “sky”-components n and the s, “spin”

components f (s) ¢ {f , f I Figure: Supersky iso-mismatch ellipsoids (red) and their restriction (yellow) to the sky-sphere (blue)
\ n| =1, for different observation times T, at fixed frequency v.

[ sky x sky  sky x spin

 (8ab Sas'\ _ (2 x 2) (2 X Smax]) : :
gy = (5 &) - spin x sky | spin x spin
\ (Smax X 2) | (Smax X Smax) / Supersky-metric is constant over parameter space!
= sky-metric obtained from simple projection onto 2D sky-sphere

= simple coincidence scheme over whole parameter-space
= allows estimation of number of templates using “flux” formalism
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Spin metric

The metric in the “spin” components A° € {f,,...} is easy to compute analytically,
and is found to be

gss = (1) — (E)(F°) =

(s+1)(s"+ 1)
(s+2)(s"+2)(s+s"+3)
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