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Abstract

The parameter-space metric of coherent searches for continuous gravitational waves
is generally non-constant, due to the components involving the signal’s sky position.
This long-standing problem greatly complicates (i) template placement, (ii)
coincidence schemes, and (iii) estimating the number of templates. We show that
extending the 2D sky to a 3-dimensional “supersky” yields a constant metric in the
embedding space. This formalism can help with (i)-(iii).

Definition of the CW metric

Unknown “Doppler” parameters λ: sky-location ñ of the source, intrinsic frequency f
and spin-down parameters ḟ , . . .
Note: |ñ| = 1 is a unit-vector pointing to the sky-location of the source.
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Signal phaseΦ(t) is approximately [1]:
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(1)

The metric [2, 3] measures relative loss m of SNR2 due to an offset ∆λ in
Doppler-parameters from signal-location λs (“mismatch”):

m ≡ SNR2(λs) − SNR2(λs + ∆λ)

SNR2(λs)

Taylor-expanding this for small offsets ∆λ defines the metric tensor gij :

m = gij(λs)∆λ
i∆λj + O(∆λ3)

The metric tensor gij can be computed approximately [4] as

gij(λs) ≈ 〈∂iΦ∂jΦ〉− 〈∂iΦ〉〈∂jΦ〉
in terms of phase-derivatives ∂iΦ ≡ ∂Φ/∂λi and where 〈Q〉 is the time-average of
Q(t) over the observation time T:

〈Q〉 ≡ 1
T

∫T

0
Q(t) dt

Phase variation in natural units

We use rescaled quantities, namely

t→ t
T

r(t)→ r(t)
Rorb

measuring t in units of the observation time T and r in units of the orbital radius Rorb.
Similarly we rescale the Doppler parameters as

f (s)→ 2π
(s + 1)!

f (s)Ts+1 , ñ→ ñ ′ ≡ 2π
c

f̄ Rorb ñ ,

and so we can now write the variation dΦ(t; λ) of the signal-phase (1) as

dΦ(t; λ) ≈ t df + r(t) · dñ ′ + t2 dḟ + . . . (2)

Metric structure

The metric gij has a block-structure in the 2 “sky”-components ñ and the smax “spin”
components f (s) ∈ {f , ḟ , . . .}:

gij =

(
g a b g a s ′

gs b gs s ′

)
=


sky× sky
(2× 2)

sky× spin
(2× smax)

spin× sky
(smax × 2)

spin× spin
(smax × smax)



Spin metric

The metric in the “spin” components λs ∈ {f , ḟ , . . .} is easy to compute analytically,
and is found to be constant:

gss ′ = 〈ts ts ′〉− 〈ts〉〈ts ′〉 =
(s + 1)(s ′ + 1)

(s + 2)(s ′ + 2)(s + s ′ + 3)

Sky metric

The metric involving “sky” components ñ involves integrations over the
detector-motion r(t), and generally varies over the sky:

Figure: Sky iso-mismatch ellipses (yellow) over the sky-sphere (blue) |n| = 1, for different observation
times T, at fixed frequency ν ≡ f (1 + Vorb · ñ).

The varying sky-metric complicates + template placement, + coincidence schemes
over the sky and + estimating the number of templates.

“Supersky” metric

We formally relax the constraint |ñ| = 1, allowing the sky-vector n to have 3
independent components {nx, ny, nz}. This 3D-embedding of the 2D sky-sphere
greatly simplifies the expressions for the supersky-metric components, namely

gll ′ = 〈rl rl ′〉− 〈rl〉〈rl ′〉
which is constant over the full extended parameter space for any observation time T.
The same is true for the mixed sky-spin components of the metric, which have the
form gls = 〈rlts〉− 〈rl〉〈ts〉. The curved sky-metric is obtained by restricting the
supersky to the 2D sky-sphere:

Figure: Supersky iso-mismatch ellipsoids (red) and their restriction (yellow) to the sky-sphere (blue)
|n| = 1, for different observation times T, at fixed frequency ν.

Discussion

Supersky-metric is constant over extended parameter space!
+ sky-metric obtained from simple projection onto 2D sky-sphere
+ simple coincidence scheme over whole parameter-space
+ allows estimation of number of templates using “flux” formalism
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