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FIG. 3: The posterior probability distributions of the signal pa-
rameters. The solid red curves correspond to posteriors gen-
erated using the frequency domain approach, and both solid
and dashed blue curves correspond to the pre-folded profile
approach. The solid blue curve represents the case where the
folding period was equal to P . The dashed blue curve repre-
sents the case where the folding period was P ′ = P (1 + 10−5).
The vertical black dashed lines are the true simulated signal
parameter values.
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FIG. 2: The folded pulse profiles for a 250.003294761 Hz sig-
nal constructed in 25 sec sub-intervals within a 100 sec obser-
vation and in 5, 2 MHz wide frequency bands. Shown in solid
black are the curves for a simulated signal of pulse amplitude
0.1, dispersion measure 500 cm−3pc and folded with the true
signal period. The dashed red curve is the noise free, profile
model generated using Eq. 8 with no error in folding period.
The dashed blue curve is for identical parameters using a 10−5

fractional period error.

FIG. 1: An example frequency-frequency map computed for
a small block of time across 50 frequency channels. The z-
axis scale is proportional to the signal power. Note that the
250.003294761 Hz simulated signal is clearly visible as a series
of diminishing amplitude harmonics. Not plotted here is the
phase, which for a given harmonic as a function of channel
frequency, is determine by the dispersion measure.

a = (P ′ − P )2/2w2 (9)
b = −(P ′ − P ) (φ′P ′ − φP ) /2w2 (10)
c = − (φ′P ′ − φP )

2
/2w2 (11)

· Conclusions and future work
We show in Fig. 3 the results of a Bayesian nested-sampling
integration technique implemented with MultiNest [4].
The results from this simplistic model indicate that the
data reduction procedure of folding the data does not af-
fect our ability to estimate parameters. One does see
however, that this is not the case when using an incorrect
folding period, even when one accounts for this.

Here we have focused on the parameter estimation of a
single TOA. In future work we hope to include more of
the physically relevant effects including scattering, po-
larisation calibration, and detector motion. We also in-
tend to apply this method to some real pulsar data, to al-
low for more realistic noise behaviour and to extend the
analysis to span multiple observations in order to sensi-
bly compare these approaches to existing methods.

· Method 1 : A frequency domain approach
The signals recieved from pulsars are periodic and their
frequency evolution is slow. By Fourier transforming
each channel’s time-series we find that a pulsar signal
can be represented as a series of narrow-band harmon-
ics (see Fig. 1) allowing us to be economic with the data
samples used since we will have good prior information
on the pulse period. If we now apply the Fourier trans-
form to a complete noise-free signal pulse train we ob-
tain

s̃(νl, fk) =
AwT

P

√
2π exp

{
−2(πwνl)

2 − 2πiµ0kνl
}
W̃l,

(5)
where the complex function W̃l is given by

W̃l =
n−1∑
α=0

{
sin(2π∆νlαT )

2π∆νlαT
+ i

[
cos(2π∆νlαT )− 1

2π∆νlαT

]}
(6)

and ∆νlα = νl − α/P . Note that in this frequency-
frequency plane where l indexes the Fourier frequency
(as opposed to the channel frequency), we see that each
pulse harmonic will be identical in profile for each chan-
nel. It will however be rotated in phase by a quantity
dependent upon the dispersion measure and the precise
frequency value of the discrete Fourier frequency bin in
question.

· Method 2 : Using pre-folded data
If we consider a dataset that has been already folded at a
specific (non-exact) pulse period P ′ 6= P (see Fig. 2) we
can model the signal profile as

X(φ′, P ′) =
n′−1∑
β=0

s ((β + φ′)P ′, fk) , (7)

where β indexes each fold up to n′ ≈ T/P ′. Substituting
in our signal model (Eq. 2) we can accurately approxi-
mate the discretely summed pulse profile as

X(φ′, P ′) ≈ A
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where we have used

· Introduction
Pulsar timing arrays could well be used to detect ultra-
low frequency gravitational waves (GWs) within the next
5-10 years [1]. This is an especially exciting prospect
given the concurrent efforts of the LIGO-Virgo Scien-
tific collaboration (LVC) who’s aim is to make direct de-
tection of GWs (in the ∼10-1000 Hz regime) using the
2nd generation of ground based interferometric detectors
within the same timescale [2].

In this work we outline the beginnings of a Bayesian ap-
proach to the detection of GWs with pulsar timing using
simplistic signal and noise models onto which can be
built further levels of sophistication in the future. We
also focus on a single piece of the complete pulsar tim-
ing analysis, the generation of time-of-arrival (TOA) mea-
surements. Given a single pulsar observation, this is the
arrival time of the average pulse at the telescope where
in this context “average” means the sum of pulses pro-
duced by “folding” the data with a periodicity equal to
the assumed pulse period. It is from these TOAs that pul-
sar astronomers then model the spin evolution of pulsars
taking into account the motion of the radio telescope rel-
ative to the pulsar [3]. The presence of GWs in the field
between the telescope and the pulsar will result in small
shifts in the arrival times of pulses.

Since the definition of the TOA is defined at the tele-
scope and the GW timescale � the timescale of a sin-
gle observation, we are able to neglect any GW effect in
the generation of TOAs. We will discuss two different
strategies for the estimation of parameters (including the
TOA) from two separate starting points, what we will
call “search-mode” data and “pre-folded” data. In both
cases we perform the analysis using a standard Bayesian
integration algorithm in order to obtain posterior proba-
bility distributions on the signal parameters.

· The signal model
We begin with a dataset defined on a discrete 2-dimensional
grid of time tj versus radio-frequency fk. In practice this
is referred to as “search-mode” data for which we as-
sume the following signal model

x(tj, fk) = s(tj, fk) + n(tj, fk), (1)

where x(tj, fk) represents the data-set, s(tj, fk) is the sig-
nal and n(tj, fk) is the noise which for simplicity we as-
sume is Gaussian distributed with zero mean and unit
variance. The signal itself we define as

s(tj, fk) =
n−1∑
α=0

A exp
[
− (tj − µαk)2 /2w2

]
, (2)

where α sums over all n ≈ T/P Gaussian profile pulses
present in the time-series for each frequency channel.
We use A as the pulse peak amplitude, w is the pulse
width, and the centre of the α’th pulse in the k’th fre-
quency channel is defined as µαk = (α + φk)P with P
as the pulse period and φ,defined on the range [0, 1), is
the phase of the first pulse with reference to the obser-
vation start t = 0. It is related to the more commonly
used phase φ0 defined as the phase of the pulse at the
midpoint frequency channel fmid and with reference to
the midpoint of the observation t = T/2 by

φk = mod (T/2 + φ0P + ∆tk, P ) , (3)

where the relative delay due to dispersion in the k’th fre-
quency channel ∆tk is given by

∆tk = 4.148808× 103
(
f−2
k − f−2

mid

)
D sec (4)

where D is the dispersion measure in cm−3pc and the
units of the frequencies are MHz.

The increasing sensitivities of pulsar timing arrays to ultra-low frequency (nHz) gravitational waves promises to make direct gravitational wave detection within the next
5-10 years. While there are many parallel efforts being made in the improvement of telescope sensitivity, in the detection of stable millisecond pulsars and the

improvement of the timing software there are reasons to believe that the methods used to accurately determine the time-of-arrival (TOA) of pulses from radio pulsars can
be improved upon. More specifically, the determination of the uncertainties on these TOAs, which strongly effect the ability to detect GWs through pulsar timing, may

be unreliable. We propose two Bayesian methods for the generation of pulsar TOAs starting from pulsar search-mode data and pre-folded data.
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