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Introduction
LISA should detect between a few tens and a few hundreds of inspirals of 
compact objects into supermassive black holes in the centres of galaxies [1], so 
called extreme-mass-ratio inspirals (EMRIs). LISA will be able to measure the 
parameters of each system to very high precision [2], but, from an astrophysical 
point of view, the statistics of these black holes are more important than precise 
measurements for individual systems. Here we discuss how the set of LISA EMRI 
events can be used to place constraints on the mass function of black holes. 
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Methodology
For a first analysis, we assumed         was known [3], that all EMRIs were circular, 
equatorial inspirals into non-spinning black holes and looked at the distribution 
of events in black hole mass, M, and redshift, z, only. We binned the observations 
into bins of M and z so that parameter measurement errors could be ignored. 
The data, D, is then the number of LISA EMRI events,    , in each bin, i; the model 
prescribes the number density of black holes                 and is dependent on 
some parameters y; and the likelihood is given by a product of Poisson 
probabilities for each bin

Bayes Theorem then gives us the posterior on the model parameters y

We can explore this posterior using Markov Chain Monte Carlo techniques. This 
analysis could also be done in a continuum limit, including posterior pdfs for the 
parameters of each individual event, but the results will be broadly the same.
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Current constraints on the black hole mass function
The black hole mass function can
be inferred from the observed 
galaxy luminosity function and the
          and              relations [4].
It is well fit by

The data is poorly constrained in
the LISA range,                        ,
but a single power-law is likely a 
good approximation. 

L− σ Mbh − σ

Mbh < 107M⊙

Figure 2. Inferred mass function 
from [4], plus two fits of the form 
given left. “Fit-slope” has
                 ,               ,
                      and                      .
“Fit-flat” constrained           and 
has               ,                       and
                      .
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Results - redshift-dependent mass function
We can include redshift evolution in the mass-function with the ansatz

The posterior pdfs for the
four parameters are shown 
in Figure 5 for a realisation
with                             and
                             .
  The width of the pdfs for      
and      indicate that the
black hole mass-function 
would have to change in 
amplitude by a factor of     
or in slope by                out 
to redshift          for LISA 
EMRIs to detect that there is
a redshift dependence.

Figure 5. Typical posterior pdfs and best-fit Gaussians for the four parameters of the 
redshift dependent model.
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Figure 4. Dependence of the typical error in a measurement of     (left) and    (right), on the true values of     (x-axis) and    (different lines).

Results - non-evolving mass function
We took the black hole mass function to have a simple power law form in black 
hole mass and to be independent of redshift. Such a model has two parameters - 
an amplitude and a slope

Typical posterior distributions for these parameters, obtained by MCMC, are 
shown below. The posterior pdfs for           and     are both well fit by Gaussians.

The width of the Gaussian characterizes the error we would expect to make in 
measuring the parameters using LISA EMRI events. The plots below show how 
these errors vary with the true values of      and     of the Universe.

LISA EMRI events should be able to measure the amplitude of the mass function
to a precision                                      and the slope to                               . 
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Figure 3. Posterior distribution for    and    from a typical realisation of the LISA EMRI event distribution, plus best-fit Gaussians (green lines). 
The observed set of EMRI events was generated from the distribution with                             and            .
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Summary and Future Work
  These results indicate that LISA EMRI events can be used to measure the slope 
of the black-hole mass function at low redshift to a precision                    , and 
the normalisation to a precision of            , but we are unlikely to be able to 
detect an evolution in the mass function. Future problems to address include:

• What can we learn from combined observations, e.g., using LISA 
supermassive black hole mergers or data from electromagnetic telescopes?

• What can LISA events tell us about black hole spins and processes operating 
in stellar clusters, e.g., mass segregation and EMRI capture mechanisms? 

• Can LISA observations determine both        and         or just                ?

• Extend these results to EMRIs on generic, i.e., eccentric and inclined, orbits.

∆(α0) � 0.1
∼ 10%

n(x) R(x)

EMRI detection
EMRIs begin in the Universe at a rate                in systems with parameters x, 
where        is the number density of these systems and         is the intrinsic rate 
of inspirals in such systems. Only events that are loud enough can be detected, 
which can be modelled by saying all events with SNR                     can be seen 
but no others. This defines a range of 
times (the “observable lifetime”,        ) 
during the inspiral at which LISA 
could start taking data and the source
be detected (see Figure 1, right).        
was calculated for circular and
equatorial inspirals in [1]. 
  The start time of an EMRI is random,  
so the number of events that LISA will 
detect is drawn from a Poisson process
with mean                                  . 
  Our analysis could include plunge time 
as a parameter in x. This eliminates       ,
but it is replaced by the completeness of the LISA observation. The observable 
lifetime prescription assumes 100% completeness for           , and 0% for            . 
This is a reasonable model if we assume we use an SNR cut for source selection.
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Figure 1. LISA can only detect sources if enough SNR is accumulated 
over the mission lifetime. If LISA turns on too early in the inspiral, the 
source is too quiet, while if LISA turns on too late there is insufficient 
time before plunge to accumulate the needed SNR. The difference 
between these times defines the “observable lifetime” of a source.
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