
Model selection with Markov-Chain Monte-Carlo results 
applied to Gravitational Waves

1Northwestern University, 2University of Alberta, 3MPI Hannover, 4Carleton College.  E-mail: vivien@u.northwestern.edu
V. Raymond1, M.V. van der Sluys2, I. Mandel1, V. Kalogera1, C. Röver3, N. Christensen4

1 Introduction
Among the possible sources of gravitational waves for ground based interferometers, binary compact object inspirals with members in the mass range 1M⊙ − 100M⊙ are 
likely detection candidates and relatively easy to model. A gravitational-wave event detection is challenging, and will be full of astrophysically relevant informations. Bayesian 
analysis of source properties holds major promise for improving our astrophysical understanding and requires reliable methods for parameter estimation and model selection. 
Markov-Chain Monte Carlo (MCMC) is used to obtain the probability-density function (PDF) of the parameter vector. The MCMC output is also used to compute the Bayes fac-
tor of spinning and non-spinning models fitting data sets in which a spinning signal was injected.
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7 Conclusions
• Given our understanding our MCMC allows model selection.

• The geometric mean seems to give the best results. We are investigating this on 
various posterior shapes and in more details. Further improvements are possible.

• In table 1, the small improvement between the analyses with 1 and 2 spins is due 
to the small effect of the second member of the binary on the waveform due to its 
low mass.

• The analyses of the glitch using spinning templates do not converge. This may pro-
vide suspicion against a real signal and warrants further studies.

3 Methods
Given a model     depending on parameter set   , the prior on this set
 
 
   and the 
data   , the posterior PDF of the set is given by:

We use MCMC [2,3] to explore the parameter space. The histogram of the chain con-
verges towards a function proportional to the PDF. 

p(!λ|!x, M) =
p(!λ|M) p(!x|!λ, M)

p(!x|M)

!λM p(!λ|M)
!x (

posterior =
prior ∗ likelihood

evidence

)

Fig.1. MCMC posterior values for a gaussian likelihood (1a) and corresponding mar-
ginalized PDF, with only one parameter shown (1b). The colors correspond to different 
temperatures. From cold to hot: T=1.0 , T=2.7 , T=7.1 , T=18.8 , T=50.0 .
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6 Detector data
We present results on LIGO detector data (H1L1) where a spinning signal was in-
jected (M1=10M⊙, M2=5M⊙, aspin1=0.8, aspin2=0.5) at SNR=13, and on a coincident ar-
tefact (glitch) in H1L1 at the same SNR. Fig.3 shows the marginalized PDFs, and the 
Bayes factors of the models signal+noise versus noise only are in table 1. As ex-
pected the Bayes factor is higher for more accurate models. Correlations among pa-
rameters (e.g. sky position) may also help differentiate glitches from signals (fig. 3b).

LIGO-G0901059-v1

2 The waveform
Our waveform model computes templates up to 3.5 pN order in phase (Newtonian in 
amplitude) [1], using the LSC Algorithm Library.

The 15 parameters: chirp mass, mass ratio, distance, time and phase at coalescence, 
right ascension and declination, inclination and polarisation angle, magnitude, inclina-
tion and phase of spin 1 and 2.

!λ = {Mc, η,dL, tc, ϕc, α, δ, ι, ψ, aspin1, θ1, φ1, aspin2, θ2, φ2}

Fig.2. Evidences as a function of iteration number (2a) and their spread out of 50 trials 
(2b). The colors represent different means of the evidences from each temperature chains.
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The total parameter space volume yields a value for and the evi-
dence is approximated by:

VT t =
N∑

k=1

VT !λk
αT i

pT (!x|Mi) ≈
N∑

k=1

p(!λk|Mi) p(!x|!λk, Mi)VT !λk

We need to compute the evidence             , which for a parametrized model is an in-
tegral over the parameters. This integral is approximated by a discrete sum over the 
sampled points [4]:

p(!x|Mi)

Oi,j =
p(Mi|!x)
p(Mj |!x)

=
p(Mi) p(!x|Mi)
p(Mj) p(!x|Mj)

=
p(Mi)
p(Mj)

Bi,j

5 Evidence
Bayesʼ theorem on the Mode       :
allows us to use the data available to compare two models and :

p(Mi|!x) =
p(Mi) p(!x|Mi)

p(!x)Mi

Mi Mj

Fig.2 shows the evidence for the Gaussian likelihood of section 4 as a function of 
number of points used (2a) and the spread for different ways of combining the evi-
dences of temperature chains (2b). The geometric mean seems to be the least biased 
and with smallest variance in this limited test.

Table 1. Logarithms of Bayes factors of signal versus noise. 3 templates are used on 
3 data sets. In each cell the left number was computed using the coldest chain, while the 
right number using the geometric mean of the evidences from all the chains. The numbers 
with (*) mark are from chains not having converged, and suffer from under-sampling.

templates no spin 1 spin 2 spins
data sets
synthetic noise 52.4 34.3 68.9 41.8 69.0 43.5
detector noise 60.6 42.3 67.6 45.6 68.6 45.7
glitch 37.7 30.2 74.5* 36.9* 83.2* 37.4*

Where         is the volume associated with point . The sampling properties of the 
MCMC ensure that:

VT !λk

!λk

pT (!x|Mi) ≈ Vt

[
N∑

k=1

(
p(!λk|Mi) p(!x|!λk, Mi)

)−1
]−1 N∑

k=1

p(!x|!λk, Mi)
1−T−1

lim
N→∞

VT !λk
= αT i

(
p("λk|Mi) pT ("x|"λk, Mi)

)−1
= αT i

(
p("λk|Mi)

(
p("x|"λk, Mi)

)T−1)−1

4 Parallel Tempering
We run several chains in parallel and artificially modify the likelihood function with the 
“temperature” T:

Additional proposals allow swapping between chains [5]. In fig.1a the posterior value 
for different temperature chains as a function of the iteration number is shown, with 
the corresponding PDF in fig.1b. A simple multi-dimensional Gaussian likelihood is 
used.

pT (!x|!λ, M) = p(!x|!λ, M)
T−1

Fig.3. Marginalized 1D PDFs (3a) and 2D PDF of the sky position (3b). The colors 
correspond to different data sets: blue , purple , green , for an injection at SNR=13 in 
detector noise H1L1 recovered with no, 1 or 2 spins. Red , for a glitch of SNR~13 in 
H1L1 recovered with no spins (spinning templates did not converge on the glitch).
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