


Decisions about the future require a good
understanding of the past

Outline:
o A brief history (50 vears) of calorimetry
» Common misconceptions

» Options for the future

e Conclusions






Milestones

e 1965 - Quantum leap in signal quanta (e-h pairs in semiconductors)

Performance of calorimeters improves with energy
(~ EV2 if statistical processes are the limiting factor)
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One can do even better in cryogenic calorimeters!
(binding energy Cooper pairs ~ meV)
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A brief history of calorimetry
(used as a particle detection technique)

o [n the 1960s, particle physics started to make the transition from
the bubble chamber era to experiments based on electronic counters

® The detectors basically formed a magnetic spectrometer,
in which all charged particles produced in reactions on a fixed target

were analyzed: — nromentum Jfrom effects Lorentz force

Energy (mass) from time-of-flight or dE/dx

® For the detection of the neutral reaction products (overwhelmingly 'ys
from m°decay), one used scintillating crystals, developed in the 1950s
Jor nuclear spectroscopy, and called these “shower counters”™

® Using properly chosen materials (high Z!), even very-high-energy s
can be fully absorbed in detectors of limited length (<30 cm),
and be measured with spectacularly good energy resolution



Milestones

e 1965 - Quantum leap in signal quanta (e-h pairs in semiconductors)

e 1970 - Shower counters in HEP (crucial for discovery b-quark)



1970s - Shower counters in magnetic spectrometers
Example: E70 / 288 @ Fermilab
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Shower counters in the 1970s
(electron identification in a fixed-target experiment - NIM 127, 495)

SIDE VIEW TOP VIEW
DE T2
oll® - lead f
Oll®@ glass
BEAM @ @
@ @ 75cm 75¢cm
©|© \ 4
23RL Pb—*
le——27 RL —»
10000 :
: 1 12000}
12, 1 10000}
S
Q 1000} .
2 1, {8000}
O i
5 J | 6000}
£
100 F .
= . 1 4000} é
Z B
1 2000}
. had!”"ﬁ.g'."-.

1 L 1 I 1 1 0 L I 1 1 1 " L L
0.2 0.4 0.6 0.8 1.0 1.2 0.6 0.7 0.8 09 1.0 LI 06 0.7 0.8 09 1.0 1.1
Energy / momentum



Early indication that hadron calorimetry is different!

NIM 75 (1969) 130
450 kg of Nal (Tl) crystals

NUMBER OF COUNTS
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Tested with 8 GeV particle beams

Conclusions of authors:

o 50% of energy leaks out
e MC: much less leakage

o Same results at4, 12, 16 GeV
* Resolution did NOT improve with E



Milestones

e 1965 - Quantum leap in signal quanta (e-h pairs in semiconductors)

e 1970 - Shower counters in HEP (crucial for discovery b-quark)

e 1974 - Liquid argon calorimetry invented



Willis/Radeka Lar calorimeter for an ISR experiment (1974)

Direct collection of ionization charge
in a dense sampling medium
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1975 - Calorimeters take on new tasks
(target, trigger counter, tracking, particle ID)
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Milestones

e 1965 - Quantum leap in signal quanta (e-h pairs in semiconductors)
e 1970 - Shower counters in HEP (crucial for discovery b-quark)

e 1975 - Liquid argon calorimetry invented

e 1980 - 47t calorimeters introduced (crucial for discovery W boson)



1980 - Calorimeters become crucial component of 47 experiments
(event selection: trigger on energy flow parameters such as missing Er)

Led to discovery of W —ev, W— uv

)

UA2
(CERN)



Example of energy flow information
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Milestones

1965 - Quantum leap in signal quanta (e-h pairs in semiconductors)
1970 - Shower counters in HEP (crucial for discovery b-quark)

1975 - Liquid argon calorimetry invented
1980 - 47 calorimeters introduced (crucial for discovery W boson)

1987 - Compensation mechanism understood



Early indication that hadron calorimetry is different!

NIM 75 (1969) 130
450 kg of Nal (Tl) crystals

NUMBER OF COUNTS
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Tested with 8 GeV particle beams

Conclusions of authors:

o 50% of energy leaks out
e MC: much less leakage

o Same results at4, 12, 16 GeV
* Resolution did NOT improve with E



Energy resolution of a homogeneous hadron calorimeter
(60 tonnes of liquid scintillator)
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High resolution hadron calorimetry had become a reality
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Figure 9: The hadronic energy resolution as a

function of energy, for a homogeneous calorime-
ter consisting of 60 tonnes of liquid scintillator
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Figure 10: The hadronic energy resolution as a
function of energy, for the compensating
SPACAL lead/plastic-scintillator calorimeter

(sampling fraction 2%)
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SPACAL 1989




Hadlronic signal distributions in a compensating calorimeter

from: NIM A308 (1991) 481
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Hadron calorimetry in practice
Energy resolution in a compensating calorimeter
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Milestones

1965 - Quantum leap in signal quanta (e-h pairs in semiconductors)
1970 - Shower counters in HEP (crucial for discovery b-quark)

1975 - Liquid argon calorimetry invented
1980 - 47 calorimeters introduced (crucial for discovery W boson)
1987 - Compensation mechanism understood

2000 - Merits of dual-readout calorimetry experimentally demonstrated



DREAM: Structure

—2.5 mm-
~— 4 mm——-

e Some characteristics of the DREAM detector

- Depth 200 cm (10.0 Ajyt)

Effective radius 16.2 cm (0.81 Aint, 8.0 pyr)

Mass instrumented volume 1030 kg

Number of fibers 35910, diameter 0.8 mm, total length &~ 90 km

Hexagonal towers (19), each read out by 2 PMTs



DREAM: How to determine f, and E?
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DREAM: Effect of event selection based on f,,,
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Calorimeter response
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Milestones

e 1965 - Quantum leap in signal quanta (e-h pairs in semiconductors)
e 1970 - Shower counters in HEP (crucial for discovery b-quark)

e 1975 - Liquid argon calorimetry invented
e 1980 - 47t calorimeters introduced (crucial for discovery W boson)
e 1987 - Compensation mechanism understood

e 2000 - Merits of dual-readout calorimetry experimentally demonstrated

e 2005 - Imaging calorimetry demonstrated (LAr)



2005 - Imaging calorimetry pioneered by ICARUS (LAr)

CERN to Gran Sasso v beam
~oegi-







Misconceptions about calorimetry

e A shower is a collection of mips




Misconceptions about calorimetry

e A shower is a collection of mips

This misconception is

THE SOURCE OF MANY CALIBRATION PROBLEMS



The sampling fraction changes as shower develops™
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Calibration misery of longitudinally segmented devices
Example: AMS (em showers!)
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Required very elaborate MC simulations to solve,
since effects depend on energy and direction incoming particle
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In a calorimeter, showers initiated by electrons and vys
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Catastrophic effects of ONE individual shower particle (1)

pical process inside a hadronic shower

—~— p (0.57 GeV/c) —
(Eyip = 160 MeV)




“Spike” events in CMS
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Spikes in CMS ECAL (after Swiss-cross elimination!)
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Catastrophic effects of ONE individual shower particle (2)
The Texas Tower effect (CDF, 1988)
Sampling fraction mips = 1 0 ——= 100 GeV shower = I MeV in gas!
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Catastrophic effects of ONE individual shower particle (3)

(my prediction: bets, anyone?)

The high-luminosity CMS upgrade of the endcap calorimeter system
has a section (FH) consisting of 5 cm thick brass absorber plates,
interleaved with 100 um silicon.

Sampling fraction for mips = 6 - 1 0

An event such as this one
(initiated by a 160 MeV proton)
may deposit 30 MeV in one Si layer

No signal saturation!
: —— p (0.57 GeVic) —

(Egin = 160 MeV)
This will be interpreted
as a 50 GeV energy deposit!



The range of low-energy protons in different materials
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Misconceptions about calorimetry

e A shower is a collection of mips

o Energy resolution = width of signal distribution



A comment for those who want to “optimize” energy resolution

Energy resolution = precision with which the energy of a particle
or jet showering in the calorimeter can be determined

A narrow signal distribution may ONLY be interpreted as a good energy
resolution if it is centered around the correct energy value

Therefore, signal linearity is an integral aspect of good energy resolution



Results of miscalibration: Mass dependence
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IFigure 14: Signal distributions for s and various hadrons decaying into all-y final
states. All particles have the same nominal energy and the detector, which has an in-
trinsic resolution of 0.5% for em showers of this energy, was calibrated with electrons
using B/A = 0.8. See text for details.



Misconceptions about calorimetry

e A shower is a collection of mips
o Energy resolution = width of signal distribution

e Energy resolution scales like E 12



Hadronic energy resolution of compensating vs modern calorimeters
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Misconceptions about calorimetry

A shower is a collection of mips
Energy resolution = width of signal distribution
Energy resolution scales like E Lk

Linearity = you can fit a straight line through some data points



Response non-linearity in CALICE W/Si ECAL
NIM A60S (2009) 372
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Misconceptions about calorimetry

A shower is a collection of mips
Energy resolution = width of signal distribution

Energy resolution scales like E ik

e Linearity = you can fit a straight line through some data points

Signal saturation does not matter
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Signal saturation in the CALICE DHCAL
(overcompensating @ < [0 GeV)

Rev. Mod. Phys. 88 (2015) 15003
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Misconceptions about calorimetry

A shower is a collection of mips

Energy resolution = width of signal distribution

Energy resolution scales like E ik

e Linearity = you can fit a straight line through some data points

Signal saturation does not matter

Compensation would be nice, but is not really important



Hadronic energy resolution of compensating vs modern calorimeters
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Misconceptions about calorimetry

A shower is a collection of mips

Energy resolution = width of signal distribution

Energy resolution scales like E ik

e Linearity = you can fit a straight line through some data points

Signal saturation does not matter

Compensation would be nice, but is not really important

The only effect of non-compensation is a constant term in the energy resolution



Difference only noticeable for E > 1000 GeV
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Misconceptions about calorimetry

o The only effect of non-compensation is a constant term in the energy resolution

- Hadronic signal non-linearity

- Non-Gaussian response functions

- Different average signal for p, 7, K

- Calibration problems, especially if e/h (em) # e/h (had)



Proton / pion differences in calorimeter signals
caused by differences in em shower fraction characteristics
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Consequences for LHC calorimeters
Hadronic response and signal linearity (CMS)

CMS pays a price for its focus on em energy resolution
ECAL has e/h =2.4,while HCAL has e/h=1.3

—> Response depends strongly on starting point shower

hadrons

ECAL
e/h =24

HCAL
e/h=1.3

| —»— n-, late showering events

|| —®— n&- all events

|| —»— n-, early showering events

Average signal per GeV (a.u.)

CMS Calorimeters

Data from: CMS note 2007/012
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Misconceptions about calorimetry

e A shower is a collection of mips

e Energy resolution = width of signal distribution
e FEnergy resolution scales like E ik

e Linearity = you can fit a straight line through some data points
e Signal saturation does not matter

o Compensation would be nice, but is not really important

o The only effect of non-compensation is a constant term in the energy resolution

o ALL CALORIMETER PROBLEMS CAN BE SOLVED OFFLINE



Options for the future

o Intrinsically compensating calorimeters

* Dual-readout calorimeters

* Particle Flow Analysis systems



A good alternative for future collider experiments

(compensating em and had segments)

ECAL
e Pb/fiber 4:1, 0.5 mm fibers (RD1) HCAL
e ]|0mm Pb/2.5mm scint [Bern87]
Energy (GeV) —
10 20 40 80 150 (o0}
5 ' ' ' — Energy (GeV) —
@ ®  Experimental data ] 3 5 7 10 20 50100 ©°
o 4 O/E=9.2%/\E+0.63% | ' ‘ ' o
.5 ------- O/E=109%/\E ®1.11% | 301 T
S3 |
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O 5, L vl 449
> H VE
=2 © 10}
o 1 r
c L
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0 . 1 ; L i L i 0 L I | 1 !
0.4 0.3 0.2 0.1 0 06 05 04 03 02 0.1 0
< 1/\/E -— 1/VE
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Culfiber dual-readout calorimetry

o Excellent em and hadronic energy resolution
o Calibration is trivial
® Excellent particle-id in longitudinally unsegmented detector

® Ultrafast Cherenkov signals give unique timing options



Methods to distinguish e/m in longitudinally unsegmented calorimeter

Lateral shower profile Difference C/S signals
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Combination of cuts: >99% electron efficiency, <0.2% pion mis-1D






Particle Flow Analysis

o The basic idea
Combine the information of the tracker and the calorimeter system
to determine the jet energy
Momenta of charged jet fragments are determined with the tracker
Energies of the neutral jet fragments come from the calorimeter

® This principle has been used successfully to improve the hadronic
performance of experiments with poor hadronic calorimetry

However, the improvements are fundamentally limited
In particular, no one has ever come close to separating W/Z this way

e The problem
The calorimeters do not know that the charged jet fragments have already
been measured by the tracker. These fragments are also absorbed in the
calorimeter. Confusion: Which part of the calorimeter signals comes from

the neutral jet fragments?
e Advocates of this method claim that a fine detector granularity will help
solve this problem. Others believe it would only create more confusion.

Like with all other issues in calorimetry, this issue has to be settled by
means of experiments, NOT by Monte Carlo simulations!!



Xo=1.8cm, 7&I—l7cm
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A frequently used, but misleading argument

o The fact that 65% of the jet energy is measured with excellent precision
in the tracker is irrelevant

@& B
In our detectors, the charged tracks are better measured than photon(s) From:
which are themselves better measured than neutral hadron(s) '
Resolution on the charged track(s) ~ Ap/p ~qq 107 || Ei = Echi,rgcd racks T Ey + Epo JC Brlent
Resolution on the photon(s) AE/E ~ 12% eon 0% 207 o CALOR 08
Resolution on the h° AE/E ~45%

& o

What matters for the jet energy resolution are the fluctuations in this 65%.

In the absence of a calorimeter, one should

therefore not expect to be able to measure jet From: NIM A495 (2002) 107

energy resolutions better than 25-30% on the basis
of tracker information alone, at any energy. And



Vienna Conference on Instrumentation

Hadronic calorimeter prototype

--f"‘ﬁwm\wv 4

\1 ﬁll

NIM A732 (2013) 466

Absorber: Tungsten or Steel
Digital readout: RPCs (I x 1 cm?)
Dimensions: 54 layers, 1 X 1 m?

Tested at CERN/FNAL, e/it 10 - 300 GeV




Some events displays of the CALICE DHCAL
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Test results digital hadron calorimeter CALICE

Tungsten— DHCAL

® Pion — uncalibrated

! O Pien +

2000

® f[lectron
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Non-linear response
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Mean of response
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Both well described by
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500 |-
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L W—DHCAL Badly over-compensating
:(s A A f s A A A A e/h ~0.9_0.5

Available energy [GeV] —_— need Sma”er readout pads !!!!



The extremely narrow electromagnetic shower profile

Lateral shower profile

48 + Cerenkov

40 -+ Scintillation

35

——

30

25

20

15

Energy density (a.u.)

10

[(TTTTTT T T T I T I I I T I I Ty e Ty eIy rr T rr Ty T
RARRE RLRRN LLARN RERLY LRRLE RLLEY LARY ARRRY

o
-»
=
- .
o
.-

Distance from shower axis (mm)

NIM A735 (2014) 130



Fundamental problems with PFA

* Calibration?!
e Non-linearity (saturation effects)

e Jexas towers

Unfortunately, the proponents of PFA are not interested in these
issues, and only study engineering problems



Misconceptions about calorimetry

o A shower is a collection of mips

o Energy resolution = width of signal distribution
e Energy resolution scales like E 12
e Linearity = you can fit a straight line through some data points
e Signal saturation does not matter

o Compensation would be nice, but is not really important

e The only effect of non-compensation is a constant term in the energy resolution

o ALL CALORIMETER PROBLEMS CAN BE SOLVED OFFLINE

—» Pretend everything is OK
Build those calorimeter systems with 108 channels
Leave it to future generations to solve the mess



The future of calorimetry in high energy physics

e No funding available for generic R&D

o Ignorance, misconceptions + lack of interest for crucial issues

e Belief that all problems can be solved with technology (W, Si, RPC)

—> The future looks bleak (imho)



Where do we go from here?
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The future of calorimetry in HEP experiments
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1970s - Shower counters in magnetic spectrometers
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However, in modern 47t experiments the showers
start after < 2m, instead of 40m
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Particle identification with calorimeters

Using shower profile

(pre-shower detector)
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Calorimeters

Electromagnetic shower development

When a high-energy electron or photon enters
a calorimeter, its energy is absorbed in a

cascade of processes in which many

different “shower” particles are
produced.

Depth (X))
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The shower development is governed
by the “radiation length” X,, which
is typically ~ I cm

Even very-high-energy particles are
absorbed in relatively small detectors

(99% of 100 GeV e in 10 kg)



The physics of hadronic shower development

" A hadronic shower consists of two components

' ABSORBER

Lm
component
n X
. R SR R e ) lon-em
a LElectromagnetic component 5 A p _ . | component
: A na huclear fragment
m electrons, photons Sl I
= neutral pions — 2 y o i \ it %o
. =10 2
» Hadronic (non-em) component B
m charged hadrons n*,K* (20%) =30 .
= nuclear fragments, p (25%) 2
= neutrons, soft y's (15%) =27 = :
= break-up of nuclei (“invisible”) (40%) B
= &

R S

» [mportant characteristics for hadron calorimetry:

» Large, non-Gaussian fluctuations in energy sharing em/non-em

= Large, non-Gaussian fluctuations in “invisible” energy losses



The calorimeter response to the two shower components
is NOT the same

(mainly because of nuclear breakup energy losses in non-n° component)
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(Fluctuations in) the electromagnetic shower fraction, f,,,

i.e. the fraction of the shower energy deposited by ©°s
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The em fraction 1s, on average, Fluctuations in fe, are

large and energy dependent large and non- Poissonian



S and C signals sample the showers independently
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o/E =3.8%

Resolution improves by combining

Scintillator Cerenkov
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Signal leakage counters (a.u.)

Comparison signal shapes leakage counters

Expected signal contributions :

- prompt charged shower particles
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The energy resolution of compensating calorimeters

is dominated by sampling fluctuations
O/E = ag, /VE

Published results azymy, (%):

Experiment  Structure em resolution hadr. resolution
HELIOS  Ulplastic plates 19 - 22 34 - 39
ZEUS Ul/plastic plates 16.5 31.1
SPACAL  Pb/fibers 129 30.6
ZEUS Pb/plastic plates 23.5 41.2
RD5?2 Culfibers 8.9 (13.9) ?

sampﬁg / / \

s GEANT: 32

(incl C p.e.)



GEANT4 simulations of 100 GeV 7
RD52_Cu 65 x 65 cm?
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shower simulation simulation package
package (neutrons!!)



Projective structure
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