

The searches for neutrinoless double beta decay and other physics with EXO-200

Yung-Ruey Yen On behalf of the EXO-200 and nEXO collaborations Drexel University March 21st, 2016

Double Beta Decay

Atomic Number Z

- Double beta decay is possible for certain even-even nuclei, like ¹³⁰Te (CUORE), ⁷⁶Ge (GERDA, MAJORANA), ¹¹⁶Cd (COBRA), etc.
- ¹³⁶Xe, being the heaviest xenon isotope, is relatively easy to enriched
 - Being a noble gas, xenon can be purified in situ
 - Relatively high Q-value of 2458 keV

Two Modes of Double Beta Decay

Two neutrino mode:

- •Standard model process
- Second order
- • Δ L = 0 (lepton number conserved)

Neutrinoless mode:

- •Hypothetical "Beyond the Standard
- Model" process
- •Can happen if:
 - neutrino has nonzero mass
 - neutrino is its own antiparticle

(Majorana neutrino)

•Total lepton number violating ($\Delta L = 2$)

LNGS-21 March, 2016

Mass Measurement with $\beta\beta0\nu$

• Half-life depends on the effective mass,

$\beta\beta0\nu$ signature: a peak in the $\beta\beta$ energy spectrum

Summed electron energy in units of the kinematic endpoint (Q)

EXO-200 Liquid Xe Time Projection Chamber

~110 kg active mass Xe enriched to 80% in ¹³⁶Xe, ultralow background construction Readout plane is made up of LAAPDs (scintillation) + crossed wire grid (ionization) Achieve electron lifetime in liquid xenon $\tau_e > 3$ ms Began operating with enriched Xe at the Waste Isolation Pilot Plant (WIPP) in May 2011

Underground Detector Site

Dewey Lake

stler Form

850 ft

WIPP Surface and Underground Facilities

EXO

- Waste Isolation Pilot Plant in New Mexico, USA
- Overburden of 1585 meters water equivalent
- low salt radioactivity

Active and Passive Shielding

Xe Purity over Run 2

- Estimation based upon data from ²²⁸Th source runs
- Purity strongly correlated with circulation pump speed
- At τ_e = 3 ms: drift time <110 $\mu s,$ loss of charge: 3.6% at full drift length

Calibration System

- Periodic campaigns with
 ²²⁸Th, ⁶⁰Co, and
 ¹³⁷Cs, ²²⁶Ra
- Main calibration
 is done with 2615
 keV gamma line
 from ²²⁸Th
 source.

Event reconstruction

V-wire signals Charge clusters **1.** Event position U-wire signals 2. Event multiplicity Linked 3. Energy measurement **APD** signals Scintillation clusters Ionization Ability to 100% reconstruct in 3D individual charge Scintillation cluster down to ~200 keV (limited by induction signal)

Allows for background measurement and reduction

0*νββ*: ~90% SS

Wires are ~1 cm apart

γ -rays: ~30% SS at $0\nu\beta\beta$ Q-value

Total error in fiducial volume from position reconstruction: **1.73%**

Energy measurement

Anti-correlation of charge and light

- Rotation angle determined weekly using ²²⁸Th source data, defined as angle which gives best rotated resolution
- Energy resolution is dominated by APD noise

copper vessel

Most precise measurement of the $2\nu\beta\beta$ half-life $T_{1/2}^{2\nu\beta\beta} = 2.165 \pm 0.016(\text{stat}) \pm 0.059(\text{sys}) \times 10^{21} \text{ yr}$ [PRC **89**, 015502 (2014)]

Majoron Mode 🗿 🗤 **Search Results**

*Data fit for each Majoron mode separately

*Background shown is for fit to n=1 mode

> (Arbitrary Units) 0.6

0.4

0.2

0.0^l

 $0\nu\beta\beta\chi_0$ $0\nu\beta\beta\chi_0$

 $0
uetaeta\chi_0\chi_0$

 $0
uetaeta\chi_0\chi_0$

 $0\nu\beta\beta\chi_0$

0.0

Decay mode

0.5

1.0

Decay to Excited State

Knowledge of the decay to excited state rate check the various Nuclear Matrix Element calculations -> smaller uncertainty on the effective neutrino mass

- Search for the $2\nu\beta\beta$ decay to the excited state, 0^+_1 , of 136 Ba
- Decays to excited state has been observed in two isotopes: ¹⁰⁰Mo and ¹⁵⁰Nd
- De-excitation from the 0⁺₁ state produce two γs – unique signature
- Main background is 2νββ
 to the ground state

Decay to Excited State

- 1st EXO-200 physics analysis to use machine learning
- Being healthily skeptical of our robotic friends

- Algorithm and input variables decided prior to the final fit
- Method is chosen based on the toy MC studies of uncertainty (excited state normalization) after the "unskewing" of source agreements applied to PDFs

Phys Rev C 93 035501 (2016)

Decay to Excited State

The "discriminator" variable is produced from a combination of 6 variables as determined by BDT, boosted decision tree, machine learning algorithm,

Y.-R. Yen

Drexel

Decay to Excited State

 Machine learning improves our sensitivity compares to traditional EXO-200 method

Sensitivity of 1.7 x 10²⁴ yr

Phys Rev C 93 035501 (2016) Decay to Excited State

• 2D Maximum Likelihood fit in Energy + Discriminator

Phys Rev C 93 035501 (2016) Decay to Excited State

 $T_{1/2} (0^+ - > 0^+_1) > 6.9 \times 10^{23} \text{ yr}$

- Best fit value of 43 events
 - 90% CL of 104 events
 - Consistent with null hypothesis at 1.6σ

Search for Lorentz- and CPT- violation in double beta decay within the Standard-Model Extension

- First search for Lorentz-violation in double beta decay within the Standard-Model Extension framework
- Able to search for an oscillation-free, momentum independent neutrino coupling parameter, $\mathring{a}_{of}^{(3)}$
- A perturbation to the standard 2spectrum defines the magnitude of $a_{of}^{(3)}$ $\Gamma_0 = g_A^4 m_e^2 |M^{2\nu}|^2 G_0^{2\nu}$

$$\Gamma = \Gamma_0 + \delta \Gamma$$

 $\delta G^{2\nu} \propto \mathring{a}_{\rm of}^{(3)}$

LNGS-21 March, 2016

 $\delta\Gamma = g_A^4 m_e^2 |M^{2\nu}|^2 \delta G^{2\nu}$

Search for Lorentz- and CPT- violation in double beta decay within the Standard-Model Extension

* First limit on this parameter set by a direct search

LNGS-21 March, 2016

Other Recent EXO-200 Physics Papers

- Cosmological background: *arXiv:1512.06835, accepted by JCAP*
 - Improved understanding of Xe-137 (a muon induced background above our $0\nu\beta\beta$ Q-value)
- Alphaion fraction and mobility: *PRC 92 4 (2015)* Interesting info for potential future Ba tagging work
- Radioactivity-induced background: PRC 92 1 (2015)
 - Understanding of our backgrounds are detailed

28

EXO-200 Status to Jan. 2016

- WIPP incidents (NOT OUR FAULT!):
 - Feb. 5 2014 Fire in WIPP underground
 - Feb. 14 2014 Airborne radiological event
- EXO-200 timeline:
 - In late Feb. 2014, with remote system access, Xe was successfully recovered (as designed), followed by controlled warm up of TPC/Cryostat.

GEOFF BRUMFIEL

MARCH 26, 2015 6:40 PM E

the two-way BREAKING NEWS FROM NPP

Caused By Wrong Cat Litter

Official Report: Nuclear Waste Accide

- In Sept. 2014, lost underground power but regained access.
- Power restored in Feb. 2015
- Sample salt near the experiment show virtually zero contamination from the radiological event
- Ongoing cleanup and equipment repair/replacement
- Cooling and filling LXe TPC in the winter 2015/2016

EXO-200 is nearly 4000 feet from the radiation event

EXO-200 is Back!

A Bi-Po alpha event right after turning the detector back on

- Hardware upgrade to improve energy resolution at Q-value to 1% via improvement in minimizing APD noise
- Many of the ROI background counts come from radon daughters external to the detector. Deradonator should improve our background in the ROI.

http://nest.physics.ucdavis.edu/

Sensitivity outlook

University of Alabama, Tuscaloosa AL, USA — D Auty, T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — S Delaguis, R Gornea[†], J-L Vuilleumier [†]Now at Carleton University University of California, Irvine, Irvine CA, USA — M Moe California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada — M Dunford, R Gornea, K Graham, C Hargrove, R Killick, T Koffas, C Licciardi, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr., T Walton Drexel University, Philadelphia PA, USA — MJ Dolinski, YH Lin, E Smith, Y-R Yen, T Winick Duke University, Durham NC, USA — PS Barbeau BS Center for Underground Physics, Daejeon, South Korea — DS Leonard HEP Beijing, People's Republic of China — G Cao, W Cen, T Tolba, L Wen, J Zhao TEP Moscow, Russia — D Akimov, I Alexandrov, V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kovalenko, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, J Walton, L Yang Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, J Zettlemoyer Laurentian University, Sudbury ON, Canada — B Cleveland, A DerMesrobian-Kabakian, J Farine, B Mong, U Wichoski University of Maryland, College Park MD, USA — C Hall University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, J King, A Pocar McGill University, Montreal PQ, Canada — T Brunner \$LAC National Accelerator Laboratory, Menlo Park CA, USA — M Breidenbach, R Conley, T Daniels, J Davis, A Dragone, K Fouts, R Herbst, A Johnson, M Kwiatkowski K Nishimura, A Odian, CY Prescott, PC Rowson, JJ Russell, K Skarpaas, A Waite, M Wittgen University of South Dakota, Vermillion SD, USA — R MacLellan stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiy, A Schubert, K Twelker, M Weber

Stony Brook University, SUNY, Stony Brook, NY, USA — K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany — W Feldmeier, P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, R Krücken, F Retière, V Strickland tenon Observatorie tor double beta decay

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — S Delaguis, R Gornea[†], J-L Vuilleumier [†]Now at Carleton University Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Yu California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada — Y Baribeau, V Basque, M Bowcock, M Dunford, M Facina, R Gornea, K Graham, P Gravelle, R Killick, T Koffas, C Licciardi, K McFarlane, R Schnarr, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr., T Walton Drexel University, Philadelphia PA, USA — MJ Dolinski, YH Lin, E Smith, T Winick, Y-R Yen Duke University, Durham NC, USA - PS Barbeau, G Swift University of Erlangen-Nuremberg, Erlangen, Germany — G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea - DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, X Jiang, H Li, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, J Zhao University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, J Walton, L Yang Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, G Visser, J Zettlemover University of California, Irvine, Irvine CA, USA — M Moe ITEP Moscow, Russia — V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, B Mong, U Wichoski Lawrence Livermore National Laboratory, Livermore CA, USA — O Alford, J Brodsky, M Heffner, G Holtmeier, A House, M Johnson, S Sangiorgio University of Massachusetts, Amherst MA, USA — J Dalmasson, S Feyzbakhsh, S Johnston, J King, A Pocar McGill University, Montreal PQ, Canada — T Brunner Oak Ridge National Laboratory, Oak Ridge TN, USA — L Fabris, D Hornback, RJ Newby, K Ziock Rensselaer Polytechnic Institute, Troy NY, USA - E Brown SLAC National Accelerator Laboratory, Menlo Park CA, USA — T Daniels, - K Fouts, G Haller, R Herbst, M Kwiatkowski, K Nishimura, A Odian, M Oriunno, PC Rowson, K Skarpaas University of South Dakota, Vermillion SD, USA — R MacLellan Stanford University, Stanford CA, USA - R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiv, A Schubert, K Twelker, M Weber Stony Brook University, SUNY, StonyBrook, NY, USA — K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany — P Fierlinger, M Marino

TRIUMF, Vancouver BC, Canada — J Dilling, P Gumplinger, R Krücken, F Retière, V Strickland

33

nEXO ("next EXO")

Preliminary design of nEXO

Preliminary design of the nEXO detector in SNOLab's cryopit

nEXO R&D

Charge readout tiles

Barium Tagging (O background possible if we can ID the daughter barium ion)

RF Funnel for Gas (Int. J. of Mass. Spec., V379, 110, 2015)

nEXO vs. EXO-200

Parameter	nEXO	EXO-200	Effective Majorana mass vs. M_{total} For the mean values of oscillation parameters (dashed) and for the 3 σ errors (full)
Fiducial mass (kg)	4780	98.5	0.1 Final EXO-200 0.1 Final EXO-200 nEXO 5yr 0.01 nEXO 10yr w/ Ba tag 0.00 0.1 M _{total} (eV)
Enrichment (%)	80-90	80	
Data taking time (yr)	5	5	
Energy resolution @ Q _{ββ} (keV)	58	88 (58)	
Depth (m.w.e)	6010	1500	
Background within FWHM of endpoint (events/yr/mol ₁₃₆)	6.1x10 ⁻⁴	0.022 (0.0073)	
Background within FWHM of endpoint inner 3000kg (events/yr/mol ₁₃₆)	1.6x10 ⁻⁴		

NOT the Summary

- EXO-200 has restarted and hope to do great physics in running for 3 more years.
- Effort toward nEXO R&D is just one of the byproduct.

- Problem at WIPP (yes, organic kitty litter - not EXO's fault!)
 caused a two year biatus, but we
- caused a two year hiatus, but we have overcame that.
- (Yes, the organic kitty litter thing is rather memorable if not confusing.)

- 100 kg·yr (736 mol·yr) ¹³⁶Xe exposure of EXO-200 data have resulted in
 - Precision $2\nu\beta\beta$ measurement (*PRC* **89**, 015502 (2014))
 - 0νββ limit (*Nature* **510**, 229 (2014))
 - Majoron mode limits (*PRD* **90,** 092004 (2014))
 - $-2\nu\beta\beta$ to the excited state limit (*PRC* **93**, 035501 (2016))
- After 2 yr hiatus, EXO-200, one of the most sensitive $0\nu\beta\beta$ experiment currently, has restarted to take more data (Jan. 2016)
- Upgrades (electronics and deradonator) will help with nEXO (5 ton next-gen LXe experiment) R&D currently in progress

THANK YOU FOR YOUR ATTENTION!

EXO-200 $0\nu\beta\beta$ Half-life Sensitivity

 $T_{1/2}^{0\nu\beta\beta} > 1.1 \cdot 10^{25}$ yr (90%CL) $< m_{v} > < 190 - 450 \text{ meV}$ Median $T_{1/2}^{0\nu\beta\beta}$ sensitivity:

1.9.10²⁵ yr

J.B.Albert et al. (EXO-200), Nature (6 June, 2014) A. Gando et al. (KamLAND-ZEN), PRL 110 (2013) 062502 M. Agostini et al. (GERDA), PRL 111 (2013) 122503

With upgraded detector and 2 yrs of live-time, EXO-200 $T_{1/2}^{0\nu\beta\beta}$ median sensitivity will increase by a factor of 3.

One of the most sensitive $0\nu\beta\beta$ experiments in the next 3 - 5 years.