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Figure 2: At leading order, diboson processes proceed from qq̄ initial states. The t, u channels
(left) and the s channel (right) contribute only to particular amplitudes under SU(2)⇥ U(1).

There are also quintet ww states, such as W+W+, but they require two final-state jets at

LO, whereas we will focus on production with no jets at LO. This means we only deal at

LO with three SU(2)-singlet qq̄ initial states

|uRūRi , |dRd̄Ri , |uLūLi � |dLd̄Li , (3.5)

and the triplet of states

�

|uLd̄Li , |uLūLi+ |dLd̄Li , |dLūLi
 

. (3.6)

Production rates at LO involve s-, t-, u-channel Feynman diagrams. The s-channel

diagram, with an fabc symbol, only contributes for ww3 states. Because of this, the LO

production rates for xx, wx, and ww1 are proportional, di↵ering only in the coupling

constants.

This suggests that symmetries should exist among the observable cross sections of interest

�(pp ! V1V2). To determine the implications more precisely, we must take into account

the production of scalars (e.g., the �3 inside Z), the interference between di↵erent channels

(e.g., since W�� is a superposition of wx and ww3), and the convolution with PDFs.

Since the quark-scalar couplings are proportional to quark masses, we can neglect scalar

production in the t- and u-channel diagrams, so the scalars contribute only to triplet

processes. When final-state scalars do contribute, they do so in the spin-sum of squared

helicity-amplitudes, so there are no associated interference e↵ects.

3.2 Squared amplitudes

The production of dibosons in the limit in which their masses can be neglected can be

written in a simple form. We will denote the coupling-stripped LO singlet-, triplet- and

scalar amplitudes by

a1 / M(xx) / M(wx) / M(ww1) , (3.7)

a3 / M(ww3) , (3.8)

a� / M(��) , (3.9)

in a notation which corresponds to eqs. (3.1)–(3.4). In these schematic definitions, we

leave polarizations implicit since we will always compute spin-averaged cross sections. The
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• Not quite clear if there are any smoking guns.   (Although 750 
GeV excess looks promising) 

• We can instead focus on precision measurements of the SM 

• We need clever ways to cancel our major sources of uncertainty 

• We already have a great symmetry that relates a set of process: 
SU(2)xU(1) of the electroweak force. 

• We will explore ratios of processes with two bosons in the final 
state

R =
�(pp ! V1V2)

�(pp ! V3V4)
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Leading Order 
massless limit

In the large energy limit,            become effectively 
massless. 

It makes more sense to think in terms of the unbroken 
SU(2)x(1) vectors: 
Goldstone bosons:

W±, Z

�±,�0

errors, because of the small branching fraction of ZZ to four leptons. Both QCD and EW

corrections to R1b are larger because the di↵erences between Z and � contribute twice.

We see from figure 1 that the variables R1a, R1b and R1c are nearly flat in m̄T , are

potentially predictable at better than 5%, and are measurable in several bins (using only

leptonic Z decays) at the ⇠ 5–6% level with 300, 3000 and 3000 fb�1 respectively. Cor-

rections to the LO prediction are moderate at low m̄T and decrease with m̄T . (In R1c the

prediction at higher-order is nearly the same as at LO, due to an accidental cancellation

between the gg contribution and other corrections.) Moreover, at 3000 fb�1 the R1a ratio

can be measured using tens of bins (the precise number depending on m̄T resolution) with

the highest bin starting above 600 GeV, nearly double what is possible at 300 fb�1.

At this level of precision, these ratios are potentially sensitive both to interesting soft-

collinear EW corrections and to BSM phenomena. We are optimistic that other variables

in our list will prove comparably useful, though this remains to be shown in future work.

3 The story at leading order

We begin with a study of diboson processes at tree level, which were first computed at

this order almost four decades ago [1–3]. In the form originally presented, the underlying

broken gauge and custodial symmetries were not manifest. Making these more explicit, we

identify ratios of particular interest. As we will see, each ratio has its own unique features,

strengths and weaknesses, even at leading order. We will study these features first at the

partonic level, where the SU(2) ⇥ U(1) structure of the rates is most clear. We then use

this structure as a guide to construct our ratio observables. Finally we show and explain

the behavior of these ratios in proton-proton collisions at 13 TeV. We conclude this section

with a short discussion of the statistical uncertainties on these variables at 300 and 3000

fb�1 at 13 TeV.

3.1 High energy limit

Well above the scale of EW symmetry breaking, we may rewrite the SM EW bosons

W±, Z, � as the triplet w±, w3 and singlet x of massless gauge bosons of SU(2) ⇥ U(1),

along with the Goldstone scalars �±,�3. (We use lowercase letters for massless gauge

bosons and capital letters for the mass eigenstates.) One basis for the massless diboson

states consists, up to normalizations, of SU(2)⇥ U(1) singlets and triplets:

xx1 ⌘ xx : |xxi , (3.1)

wx3 ⌘ wx : |w+xi , |w3xi , |w�xi , (3.2)

ww1 : |w+w�i+ |w�w+i � |w3w3i , (3.3)

ww3 : |w+w3i � |w3w+i , |w+w�i � |w�w+i , |w3w�i � |w�w3i . (3.4)
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Leading Order 
massless limit

Figure 2: At leading order, diboson processes proceed from qq̄ initial states. The t, u channels
(left) and the s channel (right) contribute only to particular amplitudes under SU(2)⇥ U(1).
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and the triplet of states
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Production rates at LO involve s-, t-, u-channel Feynman diagrams. The s-channel

diagram, with an fabc symbol, only contributes for ww3 states. Because of this, the LO

production rates for xx, wx, and ww1 are proportional, di↵ering only in the coupling

constants.

This suggests that symmetries should exist among the observable cross sections of interest

�(pp ! V1V2). To determine the implications more precisely, we must take into account

the production of scalars (e.g., the �3 inside Z), the interference between di↵erent channels

(e.g., since W�� is a superposition of wx and ww3), and the convolution with PDFs.

Since the quark-scalar couplings are proportional to quark masses, we can neglect scalar

production in the t- and u-channel diagrams, so the scalars contribute only to triplet

processes. When final-state scalars do contribute, they do so in the spin-sum of squared

helicity-amplitudes, so there are no associated interference e↵ects.

3.2 Squared amplitudes

The production of dibosons in the limit in which their masses can be neglected can be

written in a simple form. We will denote the coupling-stripped LO singlet-, triplet- and

scalar amplitudes by

a1 / M(xx) / M(wx) / M(ww1) , (3.7)

a3 / M(ww3) , (3.8)

a� / M(��) , (3.9)

in a notation which corresponds to eqs. (3.1)–(3.4). In these schematic definitions, we

leave polarizations implicit since we will always compute spin-averaged cross sections. The
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a1 a3, aL

a1 ⇠ M(xx) ⇠ M(xw) ⇠ M(ww1)

a3 ⇠ M(ww3)

a� ⇠ M(��)



Leading Order 
finite mass

d�̂

dt̂
(qq̄ ! W�W+) =

⇡ ↵2
2

Nc ŝ2
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where L,R were defined in eq. (3.21) and qq̄ 0 is ud̄ (dū) forW+V 0 (W�V 0). In d�̂(W�W+),

the upper (lower) sign holds for u-type (d-type) quarks. In these formulas, the superscripts

`, r refer to the handedness of the incoming quarks.

The partonic cross sections above are written in terms of Ais, generalizations of the ais,

defined as
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ŝ (m2
1 +m2

2)

t̂ û
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1 +m2

2)�m2
1m

2
2

⇤

, (A.10)

where m1,m2 are the masses of V1, V2. Here we have abbreviated

(T̂ Û) ⌘ t̂ û� ŝ (m2
1 +m2

2)�m2
1m

2
2 (A.11)

and defined ŝ-channel propagators

Ps ⌘

8
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Each Ps appears with a coe�cient:

N `
T = N `

� =
1

2
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û2

◆

+
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�

, (A.9)

|Ah
�|2 = (Nh

� Ps)
2
⇥
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and defined ŝ-channel propagators

Ps ⌘

8

>

>

>

<

>

>

>

:

1
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Similarly:



Leading Order 
γγ,γΖ,ΖΖ

From now on I choose to only focus on: γγ,γΖ,ΖΖ

2 Executive summary

The restoration of SU(2)⇥U(1) well above mZ , along with some happy accidents, leads to

some interesting relations among the various diboson partonic di↵erential cross sections.

These are obscured once the partonic processes are convolved with parton distribution

functions (PDFs), and are a↵ected by experimental realities that impact photons, W s and

Zs di↵erently. Nevertheless, at LO we find numerous ratios of di↵erential cross sections

for LHC diboson production that have the potential to be interesting observables.

In section 3 below, we investigate possible diboson variables at LO. We show that diboson

processes naturally divide up into three classes:

(1) ��, Z�, ZZ, (2) W±�, W±Z, (3) W+W�. (2.1)

(We do not consider same-sign W±W± processes here since extra jets must accompany

them.) Each of the first two classes is self-contained, and observables can be built by taking

ratios of various di↵erential cross sections. The W+W� process can be related to linear

combinations of processes in the first two classes, but is more complicated theoretically.

Our observables involve di↵erential cross sections for V1V2 production binned in various

kinematic variables, which we loosely denote �(V1V2) here for brevity. We are interested in

symmetric and antisymmetric combinations �S and �A; here the asymmetry is taken with

respect to reversing the relative pseudorapidity �⌘ ⌘ ⌘1 � ⌘2 of the two bosons, signed

relative to their longitudinal boost direction. (That is, events are weighted by sign(y12�⌘),

where y12 ⇡ 1
2(⌘1 + ⌘2) is the diboson rapidity. See section 3.4 for more details.) We

propose that the following ratios are of interest:1

• R1a =
�S(Z�)

�S(��)
, R1b =

�S(ZZ)

�S(��)
, R1c =

�S(ZZ)

�S(Z�)
,

• C2a =
�S(W+�)

�S(W��)
, C2b =

�S(W+Z)

�S(W�Z)
, D2a =

�A(W+�)

�A(W��)
, D2b =

�A(W+Z)

�A(W�Z)
,

R±
2 =

�S(W±Z)

�S(W±�)
, A±

2 =
�A(W±Z)

�A(W±�)
,

• R3 =
�S(W+W�)

�S(V 0
1 V

0
2 )

, A3 =
�A(W+W�)

�A(WV 0)
,

where V 0 denotes Z or �, and �A(WV 0) is some linear combination of �A(W+V 0) and

�A(W�V 0). See section 3.5 for a more precise discussion of R3 and A3.

In figures 3–6 of section 3.5, these ratios, calculated at LO and binned in ŝ, are shown.

All of the ratios are slowly varying, and each has its own special features. Observables R1a,

1Although the central values of these observables are not all independent — for instance R1c = R1b/R1a,

R+
2 /R

�
2 = C2b/C2a, A

+
2 /A

�
2 = D2b/D2a — the pattern of theoretical and statistical uncertainties is di↵erent

for each ratio.
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Similar analyses can be performed on all the other channels



Leading Order 
 Partonic cross-sections: γγ,γΖ,ΖΖ

The full formulas including O(m2
Z/p

2
T ) terms are given in Appendix A. There we define

Ais as straightforward generalizations of the ais including mass corrections. These cor-

rections are subleading in the region of phase space we study in this paper compared to

certain QCD corrections, and they introduce no uncertainties. We include them in our

numerical results, but have no need to discuss them further. In fact a few useful relations,

such as eqs. (3.22)–(3.23), are una↵ected by the boson masses.

3.3.1 ��, Z�, ZZ

Writing cW = cos ✓W and sW = sin ✓W , we have

� = cW x+ sW w3 , (3.15)

Z = cW w3 � sW x , (3.16)

and Z also contains the scalar �3. Pairs of photons and Zs can be produced in xx, w3x,

and w3w3 channels. Since w3w3 is orthogonal to the ww3 states, the production rates in

this sector are all proportional to |a1|2; see eq. (3.7). Inserting the appropriate coupling

constants and writing V 0 = �, Z, we have

d�̂

dt̂
(qq̄ ! V 0

1 V
0
2 ) =

Cq
12

ŝ2
|a1|2 , (3.17)

where

Cq
�� =

1

2

⇡↵2
2s

4
W

Nc
2Q4 , (3.18)

Cq
Z� =

⇡↵2
2s

2
W c2W

Nc

�

L2Q2 +R2Q2
�

, (3.19)

Cq
ZZ =

1

2

⇡↵2
2c

4
W

Nc

�

L4 +R4
�

. (3.20)

Here, a symmetry factor of 1/2 has been included for identical particles, Q = T3+Y is the

electric charge of quark q, and

L = T3 � YL t2W , R = �YR t2W , (3.21)

with tW = sW /cW . The O(m2
Z/p

2
T ) corrections to eq. (3.17) are given in Appendix A. Each

partonic rate in this sector is forward-backward symmetric, so d�̂A(V 0
1 V

0
2 ) = 0 (though

NLO EW corrections give a non-zero d�̂A(Z�).)

3.3.2 W±�, W±Z

We begin this section by discussing relations among W+V 0 and W�V 0 rates. Since W+V 0

and W�V 0 production are related by CP , which takes ud̄ ! W+V 0 into dū ! V 0W�, we

have (in the notation of section 3.2)

d�̂S(ud̄ ! W+V 0) = d�̂S(dū ! W�V 0) , (3.22)
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After EW breaking:
V

0
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All the neutral dibosons processes are proportional
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Ais as straightforward generalizations of the ais including mass corrections. These cor-

rections are subleading in the region of phase space we study in this paper compared to

certain QCD corrections, and they introduce no uncertainties. We include them in our

numerical results, but have no need to discuss them further. In fact a few useful relations,

such as eqs. (3.22)–(3.23), are una↵ected by the boson masses.

3.3.1 ��, Z�, ZZ

Writing cW = cos ✓W and sW = sin ✓W , we have

� = cW x+ sW w3 , (3.15)

Z = cW w3 � sW x , (3.16)

and Z also contains the scalar �3. Pairs of photons and Zs can be produced in xx, w3x,

and w3w3 channels. Since w3w3 is orthogonal to the ww3 states, the production rates in

this sector are all proportional to |a1|2; see eq. (3.7). Inserting the appropriate coupling

constants and writing V 0 = �, Z, we have

d�̂

dt̂
(qq̄ ! V 0

1 V
0
2 ) =

Cq
12

ŝ2
|a1|2 , (3.17)

where

Cq
�� =

1

2

⇡↵2
2s

4
W

Nc
2Q4 , (3.18)

Cq
Z� =

⇡↵2
2s

2
W c2W

Nc

�

L2Q2 +R2Q2
�

, (3.19)

Cq
ZZ =

1

2

⇡↵2
2c

4
W

Nc

�

L4 +R4
�

. (3.20)

Here, a symmetry factor of 1/2 has been included for identical particles, Q = T3+Y is the

electric charge of quark q, and

L = T3 � YL t2W , R = �YR t2W , (3.21)

with tW = sW /cW . The O(m2
Z/p

2
T ) corrections to eq. (3.17) are given in Appendix A. Each

partonic rate in this sector is forward-backward symmetric, so d�̂A(V 0
1 V

0
2 ) = 0 (though

NLO EW corrections give a non-zero d�̂A(Z�).)

3.3.2 W±�, W±Z

We begin this section by discussing relations among W+V 0 and W�V 0 rates. Since W+V 0

and W�V 0 production are related by CP , which takes ud̄ ! W+V 0 into dū ! V 0W�, we

have (in the notation of section 3.2)

d�̂S(ud̄ ! W+V 0) = d�̂S(dū ! W�V 0) , (3.22)

– 10 –



Leading Order 
 PDF convolutions: γγ,γΖ,ΖΖ

��,Z�,ZZ
PDF convolution

d�pp!12
dO =

X

q

Z
dx1 dx2 fq(x1)fq̄(x2)

d�̂qq̄!12
dO + (x1 $ x2)

Change to more natural variables (ŝ, y,mT)

�pp!12 =
X

q

Z dŝ
s

Z
dmt

d�̂qq̄!12
dmT

Z
dy fqfq̄

Grouping couplings with PDFs into weighted parton
luminosities

d�pp!12
dŝ =

1
s

Z
dmT

����
dt̂

dmT

����
|A1|2

ŝ2

X

q
Cqq̄!12

Z
dy fqfq̄

| {z }
L12(ŝ)

Going to transverse momentum differential distribution

��,Z�,ZZ
PDF convolution

d�pp!12
dO =

X

q

Z
dx1 dx2 fq(x1)fq̄(x2)

d�̂qq̄!12
dO + (x1 $ x2)

Change to more natural variables (ŝ, y,mT)

�pp!12 =
X

q

Z dŝ
s

Z
dmt

d�̂qq̄!12
dmT

Z
dy fqfq̄

Grouping couplings with PDFs into weighted parton
luminosities

d�pp!12
dŝ =

1
s

Z
dmT

����
dt̂

dmT

����
|A1|2

ŝ2

X

q
Cqq̄!12

Z
dy fqfq̄

| {z }
L12(ŝ)

We can define weighted parton luminosity



Leading Order 
Predictions for ratios of γγ,γΖ,ΖΖ
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Figure 3: The R1 ratios of V 0
1 V

0
2 cross sections at LO, computed in MCFM at a pp collider withp

s = 13 TeV. A pseudorapidity cut of |⌘(V )| < 1.5 is imposed. These curves are determined
almost entirely by ratios of parton luminosities, weighted by SM couplings.

3.5 Ratio observables

We now discuss the ratio observables of eq. (2.2), already mentioned in section 2. We will

present precise LO results in figures, and we will use schematic or approximate equations

to understand the results. In this and following sections, all results are for a 13 TeV pp

collider, and are obtained using MCFM 6.8 [16, 17]. The plots of our ratios are given for

diboson cross sections without decays and do not include Z or W branching fractions to

leptons.

For V 0
1 V

0
2 = ��, Z�, ZZ we found that all the partonic cross sections are forward-

backward symmetric and proportional to the kinematic function |a1|2. For each of these

processes, schematically,9

d�S
dŝ

(pp ! V 0
1 V

0
2 ) ⇠

P

q C
q
12L

S
qq̄(ŝ)

s ŝ2

Z

p
ŝ/2

dm̄T

�

�

�

�

dt̂

dm̄T

�

�

�

�

|a1|2 , (3.41)

where the Cq
12s were defined in eqs. (3.18)–(3.20). Note the numerator of the prefactor is a

weighted parton luminosity, with the PDFs weighted by process-dependent couplings and

charges. Our observable R1a then satisfies

R1a(ŝ) ⌘


�S(pp ! Z�)

�S(pp ! ��)

�

ŝ

⇠
P

q C
q
Z�L

S
qq̄(ŝ)

P

q C
q
��L S

qq̄(ŝ)
, (3.42)

with similar relations for R1b = �S(ZZ)/�S(��) and R1c = �S(ZZ)/�S(Z�).

One can then get a rough estimate for the R1 ratios by using table 1 and applying the

very crude relation L S
uū ⇠ 2L S

dd̄
. The small values of Cd

�� , C
d
Z� imply that uū initial states

9The lower limit of integration over m̄T depends on the pseudorapidity cut imposed at ⌘cut = 1.5 . In

the mZ ! 0 limit, (m̄T )min =
p
ŝ/(2 cosh ⌘cut). The limits of integration over y in L S

qq̄ also depend on m̄T ,

a point we can ignore for the heuristic arguments presented here.
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V 0
1 V

0
2 Cu

12 · 105 Cd
12 · 105

�� 1.2 0.07

Z� 2.2 0.7

ZZ 1.6 3.3

Table 1: The values of Cq
12 relevant for the R1 ratios.

Figure 4: (Left) The C2 charge ratios at LO, which go roughly like fu/fd and are identical for
W� and WZ. (Right) The D2 variables, also identical for W�,WZ. These forward-backward
asymmetric charge ratios have a similar dependence on the PDFs, complicated by sign(y) in the
asymmetric parton luminosity which results in |D2| > C2.

matter most for R1a, and the parton luminosities largely cancel. We may therefore estimate

R1a ⇠ Cu
Z�/C

u
�� ⇠ 1.8. Including Cd

12 and the crude relation among parton luminosities,

the estimate increases to 2.1. This estimate is very good, as we can see by looking at

the actual LO R1a ratio in figure 3. For ZZ, however, both uū and dd̄ initial states are

important. Although the similarly crude estimates R1b ⇠ 2.6 and R1c ⇠ 1.3 work quite

well in the 1–2 TeV range, they are somewhat too small at low ŝ because10 L S
uū < 2L S

dd̄

for
p
ŝ ⌧ 1 TeV. We will see later that NLO QCD makes only minor corrections to these

ratios, especially at high energy.

Next, we turn to the observables relating W+V 0 and W�V 0. We know from eq. (3.22)

that the partonic cross sections d�̂S(W+V 0) and d�̂S(W�V 0) are identical. This leads to

the following formula for the observable “charge asymmetry”,

C2a(ŝ) ⌘


�S(W+�)

�S(W��)

�

ŝ

⇠
P

qu,qd
|Vquqd |2L S

quq̄d
P

qu,qd
|Vquqd |2L S

qdq̄u

, (3.43)

written as a ratio of weighted parton luminosities, with Vij the CKM matrix. The same

result holds for C2b = �S(W+Z)/�S(W�Z). To derive an expectation for the magni-

tude and slope of these C2 observables, we use the fact that W+V 0 and W�V 0 are

10E↵ects from the Z mass, neglected in these estimates, are indeed small, reaching only 3–6% for
p
ŝ ⇠ 500

GeV.
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��,Z�,ZZ
Ratio observables

Ratios of cross sections determined primarily by parton
luminosities

d�pp!Z�
d�pp!��

�

ŝ
=

LZ�(ŝ)
L��(ŝ)

 
1 +

m2
Z

ŝ + · · ·
!

V0
1 V0

2 Cu
12 · 105 Cd

12 · 105

�� 1.2 0.07
Z� 2.2 0.7
ZZ 1.6 3.3

uū dominates –
PDFs mostly cancel

γγ and γΖ are largely 
independent of the 
down quark pdf
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NLO 
keeping the LO kinematics
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Figure 9: The V 0
1 V

0
2 cross section at NLO, shown relative to the LO rates. At left, the collinear

region was removed by a very strict smooth-cone isolation cut (�, ✏) = (1.2, 0.2) applied to both
�s and Zs. All 3 processes receive identical NLO corrections, thus leaving the ratios invariant.
At right, with a reasonable isolation cut (�, ✏) = (0.4, 0.5) the NLO corrections di↵er significantly
among the processes at low energies.

they su↵er. In this context, we take the following approach. On the one hand, we study in

detail the largest known NNLO correction to our ratios, namely gg ! V 0
1 V

0
2 , which is large

enough that it must be included, but fortunately is available publicly. On the other hand,

we search for additional NNLO corrections that should a↵ect our ratios, and make rough

estimates of their size to see if they are important; if so we include them as a theoretical

uncertainty.

We saw in figure 9 and eqs. (4.3)–(4.4) that many NLO corrections are common to all

three V 0
1 V

0
2 processes and cancel in the R1 ratios. Similar logic would suggest that many

NNLO QCD corrections are also common to the three processes and that, away from the

collinear-qV regions, new real contributions like qq̄ ! V 0
1 V

0
2 gg, or qg ! V 0

1 V
0
2 qg are likely

to cancel. But by looking carefully at the physical origin of various e↵ects, we can also see

where such cancellations will fail.

Before we do so, let us forestall an obvious question. Below, we will assume that many

NNLO corrections cancel in ratios, and that the largest one that does not cancel comes

from the gg ! V 0
1 V

0
2 loop graph (as suggested in ref. [45]), which we will include ex-

plicitly below. One might question this assumption based on the existing NNLO and

near-NNLO literature, which suggests potentially large KNNLO/NLO factors (1.3 � 1.6),

substantial process-dependence in these K factors, and e↵ects that can be much larger

than the gg ! V 0
1 V

0
2 loop graph. How, then, can we possibly claim that NNLO corrections

to our ratios could be brought under control, and further assume that even higher-order

e↵ects can be ignored?

Here one needs to look carefully at the details, which we do in Appendix C. The large

KNNLO/NLO arise only in situations where the cuts on the bosons and jets are very di↵erent

from our own, causing even the KNLO/LO factor to be much larger than the ⇠ 1.5 that we
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• Although we expect sizable corrections to the cross-
sections themselves (large-ish) K-factors, all processes 
receive the same corrections 

• This is thanks to our cuts that keep NLO kinematics similar 
to the LO kinematics (no new phase space is open).

pT (V1) < 2pT (V2)

pT (V2) > 2HT

No large logs



NLO 
dealing with photon isolation

Figure 8: The regime in which V and q are nearly collinear in the final state, the source of a
significant di↵erence between photon- and Z-rates.

and gives a significant NLO shift to the R1 ratios at low m̄T .

The collinear-�q singularity can be dealt with using the smooth-cone isolation method

of Frixione [58]. (While theoretically elegant, this method is not practical; we will employ

a more experimentally realistic version of Frixione isolation, and discuss the uncertainties

inherent in its use, in section 5.1.) In this method, one chooses two parameters �, ✏ and

requires that in any cone of radius R < �, the hadronic activity is bounded by a function

that goes smoothly to zero as R ! 0; in particular14

X

h2R
phT < pT (V ) I(R; ✏, �) for all R < � , (4.1)

I(R; ✏, �) =

✓

1� cosR

1� cos �

◆

. (4.2)

Here the sum is over all hadrons h within a cone of radius R around the boson.

That the R1 ratios remain unchanged outside the collinear regime may be seen by ap-

plying the Frixione method with extreme parameters (�, ✏) = (1.2, 0.2). This choice largely

removes the collinear region. Here (but see below) we apply isolation both to photons and

Zs, to maintain as much congruence as possible. At left in figure 9, we see that the K

factors are then almost identical for the three V 0
1 V

0
2 processes, and so the R1 ratios at NLO

are the same as at LO.

However, as seen at right in the same figure, when the collinear region is restored by using

more reasonable smooth-cone parameters (�, ✏) = (0.4, 0.5), there is a significant splitting

in the K factors at low m̄T , where the Z mass is particularly relevant, and thus a shift in

the R1 ratios away from their LO values. Note that the splitting of �� from ZZ is roughly

double that of �� from Z�, so the e↵ect of the collinear regime is largest on R1b.

In all results beyond this point we use (�, ✏) = (0.4, 0.5), with appropriate practical

modifications discussed in section 5.1. For this choice, and for the range of m̄T that is

relevant for the LHC, we find it unnecessary to impose isolation on Zs, for the following

reasons. At low m̄T the Frixione cut removes a region where the amplitude for Z emission is

not enhanced. Meanwhile at larger m̄T the falling qg parton luminosity makes the collinear

14Frixione included a third parameter n as an exponent on the trigonometric function here; we have

chosen n = 1.
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• The one place where Z and γ are 
different is in the collinear radiation 
from a quark line. 

• We remove this divergence by a 
Staircase isolation — an 
experimentally implementable 
variation on Frixione isolation.

R ✏h Emin

0.1 0.01 5 GeV

0.2 0.07 10 GeV

0.3 0.20 23 GeV

0.4 0.38 40 GeV

Table 4: Four concentric hard cones used to approximate smooth-cone isolation. R is the cone
angle, ✏h is the energy fraction, and Emin is a threshold below which we do not reject events,
regardless of hadronic energy fraction in the cone. Note that the value ✏(1)h is so small that, in our
kinematic regime, isolation in the innermost cone is always controlled by the energy cuto↵ Emin.
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I(R
;δ
,ϵ)

Figure 15: Comparing staircase isolation to the Frixione algorithm. (Left) The smooth curve
is I(R; ✏, �) of eq. (4.2), while the piecewise-constant curve is Î(R; ✏, �) of eq. (5.1). (Right) The
e↵ect, on �(��) at NLO, of changing the isolation procedure. At high energies, staircase isolation
is indistinguishable from the Frixione algorithm; even at low energies, the di↵erence is slight.

are plotted at left in figure 15. Then our staircase isolation criterion requires

X

h2R(n)

phT < max
n

✏(n)h p�T , E(n)
min

o

, (5.2)

where the energies E(n)
min, given in table 4, are chosen so that they lie at or above the expected

level of pile-up (up to an average of 60 pp collisions per crossing) over Run 2 and 3 of the

LHC. Since event-by-event pile-up subtraction techniques will remove a significant fraction

of the energy deposited in the isolation cone, this choice will assure that our technique will

not su↵er from large e�ciency losses due to pile-up.

At right in figure 15, we compare our staircase isolation with the Frixione algorithm,

by computing �(��) with each isolation method and taking the relative di↵erence of the

results. The two methods di↵er by at most 4% [2%] in �(��) [�(Z�)], and the di↵erence

decreases with energy. Staircase isolation thus shifts the central value of R1a (R1b) [R1c]

up by at most 2% (4%) [2%] from the values computed in section 4 with smooth-cone

isolation.
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NLO 
including the NNLO gg->VV 

• Although the gg initial state only contributes at NNLO it 
is numerically important at smaller energies. 

• We set the scales using the publicly known partial 
calculation of NNNLO for this process.
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Figure 10: (Left) Contribution from gg ! V 0
1 V

0
2 to the V 0

1 V
0
2 cross sections, expressed relative

to the corresponding NLO cross section. We used gg ! �� at O(↵3
S) to estimate gg ! Z�, ZZ at

this order. (Right) The R1 ratios, including the NLO and gg ! V 0
1 V

0
2 contributions.

tunately, much is already known about this correction, which is separately gauge-invariant

and finite. It has been known for some time [4, 5] and can consistently be combined with

the NLO calculation on its own. As it gives the largest source of NNLO corrections in most

regions of phase space and has a di↵erent dependence on EW quantum numbers than does

the tree-level process, it has an important e↵ect on our ratio observables.

Because u- and d-type quarks contribute coherently in the loop, the formulas for gg !
V 0
1 V

0
2 are not proportional to the tree-level qq̄ ! V 0

1 V
0
2 formulas. In fact gg ! w3x is zero

by SU(2) conservation, and so gg ! Z� is relatively small compared to gg ! ZZ, ��. In

figure 10 the gg contributions to the cross sections are shown relative to the corresponding

NLO di↵erential cross sections; they represent a 13% (5%) [20%] correction for �� (Z�)

[ZZ] at low m̄T , though less at higher energies where the gluon PDFs are smaller.

Partial cancellations still take place in our ratios. The observable R1a is shifted downward

by as much as 7% from its NLO value at the lowest values of m̄T we consider; however,

this gg-shift is reduced at higher m̄T , quickly becoming of order 3%. Meanwhile R1b (R1c)

shifts up 7% (14%) at low m̄T ; this gg-shift remains at the 6% (9%) level for moderate m̄T

before shrinking more rapidly to 3% (3%) at high m̄T .

Figure 10 displays the R1 ratios including the gg ! V 0
1 V

0
2 channel along with the NLO

contributions. This plot should be compared with figure 7, which shows the LO ratios.

Notice that R1a is accidentally flatter than at LO, as a result of the above-mentioned

corrections.

This plot of course depends on a choice of renormalization and factorization scales µR and

µF used for the gg ! V 0
1 V

0
2 computation. For gg ! �� the scale dependence can be reduced

because the dominant15 part of the O(↵3
S) correction is known [45]. For gg ! Z�, ZZ, we

15In Appendix B we argue that the terms neglected in ref. [45] are indeed subleading. For gg ! ZZ a

similar calculation appeared very recently [46], as this paper was nearing completion.
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Figure 10: (Left) Contribution from gg ! V 0
1 V

0
2 to the V 0

1 V
0
2 cross sections, expressed relative

to the corresponding NLO cross section. We used gg ! �� at O(↵3
S) to estimate gg ! Z�, ZZ at

this order. (Right) The R1 ratios, including the NLO and gg ! V 0
1 V

0
2 contributions.

tunately, much is already known about this correction, which is separately gauge-invariant

and finite. It has been known for some time [4, 5] and can consistently be combined with

the NLO calculation on its own. As it gives the largest source of NNLO corrections in most

regions of phase space and has a di↵erent dependence on EW quantum numbers than does

the tree-level process, it has an important e↵ect on our ratio observables.

Because u- and d-type quarks contribute coherently in the loop, the formulas for gg !
V 0
1 V

0
2 are not proportional to the tree-level qq̄ ! V 0

1 V
0
2 formulas. In fact gg ! w3x is zero

by SU(2) conservation, and so gg ! Z� is relatively small compared to gg ! ZZ, ��. In

figure 10 the gg contributions to the cross sections are shown relative to the corresponding

NLO di↵erential cross sections; they represent a 13% (5%) [20%] correction for �� (Z�)

[ZZ] at low m̄T , though less at higher energies where the gluon PDFs are smaller.

Partial cancellations still take place in our ratios. The observable R1a is shifted downward

by as much as 7% from its NLO value at the lowest values of m̄T we consider; however,

this gg-shift is reduced at higher m̄T , quickly becoming of order 3%. Meanwhile R1b (R1c)

shifts up 7% (14%) at low m̄T ; this gg-shift remains at the 6% (9%) level for moderate m̄T

before shrinking more rapidly to 3% (3%) at high m̄T .

Figure 10 displays the R1 ratios including the gg ! V 0
1 V

0
2 channel along with the NLO

contributions. This plot should be compared with figure 7, which shows the LO ratios.

Notice that R1a is accidentally flatter than at LO, as a result of the above-mentioned

corrections.

This plot of course depends on a choice of renormalization and factorization scales µR and

µF used for the gg ! V 0
1 V

0
2 computation. For gg ! �� the scale dependence can be reduced

because the dominant15 part of the O(↵3
S) correction is known [45]. For gg ! Z�, ZZ, we

15In Appendix B we argue that the terms neglected in ref. [45] are indeed subleading. For gg ! ZZ a

similar calculation appeared very recently [46], as this paper was nearing completion.
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The Plot I 
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Figure 1: (Top) R1a = �S(Z�)/�S(��). (Left) R1b = �S(ZZ)/�S(��). (Right) R1c =
�S(ZZ)/�S(Z�). The solid symbols represent our NLO (+ NNLO gg) theoretical prediction. Their
error bars indicate the expected statistical uncertainties after 300 (3000) fb�1 for R1a (R1b and
R1c). The shaded band around these points represents our estimate of QCD theory uncertainties;
see text for important details. The corresponding LO theory prediction is given in open symbols.
(By chance, higher-order corrections to R1c nearly cancel.) The bottom plot for each ratio shows the
expected fractional correction (relative to unity) from additional non-QCD corrections: an orange
solid line for the e↵ect of Z ! `` decays on the experimental measurement, a blue dashed line for
an estimate of the e↵ect of electroweak Sudakov logarithms, with a band indicating its uncertainty,
and a horizontal band for the uncertainty from the undetermined choice of ↵QED.

the ratio R1a as would be measured in 6 bins of 5–6% statistical uncertainty; the last bin

includes events with m̄T extending up to the kinematic limit. The open circles indicate

a LO prediction, while the closed circles are our result including NLO and gg-initiated
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The Plot II 
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Figure 1: (Top) R1a = �S(Z�)/�S(��). (Left) R1b = �S(ZZ)/�S(��). (Right) R1c =
�S(ZZ)/�S(Z�). The solid symbols represent our NLO (+ NNLO gg) theoretical prediction. Their
error bars indicate the expected statistical uncertainties after 300 (3000) fb�1 for R1a (R1b and
R1c). The shaded band around these points represents our estimate of QCD theory uncertainties;
see text for important details. The corresponding LO theory prediction is given in open symbols.
(By chance, higher-order corrections to R1c nearly cancel.) The bottom plot for each ratio shows the
expected fractional correction (relative to unity) from additional non-QCD corrections: an orange
solid line for the e↵ect of Z ! `` decays on the experimental measurement, a blue dashed line for
an estimate of the e↵ect of electroweak Sudakov logarithms, with a band indicating its uncertainty,
and a horizontal band for the uncertainty from the undetermined choice of ↵QED.

the ratio R1a as would be measured in 6 bins of 5–6% statistical uncertainty; the last bin

includes events with m̄T extending up to the kinematic limit. The open circles indicate

a LO prediction, while the closed circles are our result including NLO and gg-initiated
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Uncertainties 
PDFs 

This is where we reap the benefits of our work
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Figure 12: The relative PDF uncertainty bands for the individual V 0
1 V

0
2 cross sections (left) and

the R1 ratios (right). PDF variations of gg ! V 0
1 V

0
2 are included. See text for more details.

All this is straightforward except for one subtlety. Since we do not have access to the

O(↵3
S) calculation for gg ! Z� and gg ! ZZ, we obtain them by rearranging eq. (4.5) as

d�(3)(gg ! Z�, pdf1) ⇡ d�(3)(gg ! ��, pdf1)
d�(2)(gg ! Z�, pdf2)

d�(2)(gg ! ��, pdf2)
, (4.7)

where d�(. . . ; pdfi) is the cross section evaluated for PDF set Si. A similar expression

holds for gg ! ZZ. Inaccuracies in this procedure will be subleading in our uncertainties

since gg ! V 0
1 V

0
2 is itself su�ciently small.

Now we turn to uncertainties in our NLO calculation from renormalization and factor-

ization scales µR, µF . Typically the cancellation of correlated scale variations in ratios of

various processes should be viewed as accidental, since the actual structure of higher-order

corrections in di↵ering processes is uncorrelated. We wish to argue that this is not the

case here. The renormalization scale is sensitive to the ultraviolet region of higher-order

corrections, where EW symmetry is restored (up to longitudinal polarizations, which first

appear at NNLO in gg ! �3�3), and where we expect higher-order corrections in gen-

eral to take a nearly identical form for all V 0
1 V

0
2 processes. Meanwhile, factorization scale

sensitivity primarily comes from divergences associated with emissions o↵ the initial state.

While this is not directly a↵ected by the restoration of EW symmetry, it is sensitive to

the color structure of the processes order-by-order in the perturbative expansion of QCD,

which is also identical for the three V 0
1 V

0
2 processes. For these reasons the cancellation

of scale dependence we observe in our ratios is physical, since the scale choices really are

probing correlated higher-order e↵ects.

As shown in figure 13, scale-dependence is reduced from several percent in the cross

sections to 1–2% in the ratios, where the cancellation is significant for all three ratios

and works best at high energy. Here we have varied the scales (µR, µF ) independently

from 1
2 mV V to 2mV V and plotted the envelope of the relative variation in each quantity.

However, in figure 13 we have held the scales in the gg ! V 0
1 V

0
2 processes fixed. The

calculation to NLO of qq̄ ! V 0
1 V

0
2 begins at O(↵0

s), while the calculation of gg ! V 0
1 V

0
2
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Figure 13: The relative uncertainty band on the V 0
1 V

0
2 cross sections (left) and R1 ratios (right)

found by varying the renormalization and factorization scales µR, µF up and down by a factor of
2. Here the scales appearing in the gg ! V 0

1 V
0
2 process are not varied; see figure 14 below.

begins at O(↵2
s). To the order we are working there are no terms in the former calculation

which are at the same order as terms in the latter, and thus there is no sense in which the

perturbative expansion of the one can a↵ect that of the other. Correspondingly there is

no sense in which these two calculations must or should be evaluated with the same value

of µR, and so their µR dependence must be computed separately. While in principle there

could be correlation in the µF -dependence through the pdfs, it turns out that gg ! V 0
1 V

0
2

depends much more strongly on µR, and so any such correlation is unimportant.

Based on this reasoning, we have also computed the e↵ects of scale variations on the

gg ! V 0
1 V

0
2 component of the cross sections, holding all other components fixed. Lacking

the O(↵3
s) di↵erential cross sections for gg ! Z� and gg ! ZZ, we again rely on another

incarnation of eq. (4.5):

d�(3)(gg ! Z�, {µ1}) ⇡ d�(3)(gg ! ��, {µ1})
d�(2)(gg ! Z�, {µ2})
d�(2)(gg ! ��, {µ2})

, (4.8)

where {µi} stands for a choice of µR and µF . The resulting uncertainties due to scale

variation of the gg ! V 0
1 V

0
2 processes are shown in figure 14; these are consistent with

our estimate from section 4.3. Although small for each individual channel compared to the

scale variation in the left-hand plot of figure 13, cancellations are not as significant as for

the NLO scale variations. Consequently the two classes of scale variation turn out to be

quite similar in size and shape for the R1 observables, as can be seen in the right-hand

plots of figure 13 and figure 14.

Overall, we can see that while the PDF and scale uncertainties form a significant por-

tion of the theoretical error budget for individual cross sections, these uncertainties are

substantially reduced in ratios (in particular in R1a) and become subleading. This presum-

ably reflects true symmetry-related cancellations in the many NNLO corrections that are

common to the three neutral diboson processes.
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Figure 14: The relative error band on the V 0
1 V

0
2 cross sections (left) and R1 ratios (right) found

by varying µR, µF up and down by a factor of 2. Here only the scales appearing in gg ! V 0
1 V

0
2 are

varied.

5 Additional practical considerations

5.1 Photon isolation

In section 4 we used the smooth-cone photon-isolation method of Frixione, eq. (4.1), but

this is experimentally impractical. More traditional is hard-cone isolation, simply requiring

that the energy in a cone of size Rh around the photon be less than ✏h p
�
T . But if ✏h is small,

a hard cone produces large logarithms due to the incomplete cancellation of virtual and

soft gluon e↵ects. Meanwhile if ✏h is not small, the hard cone introduces large sensitivity to

the fragmentation function Dq!�(z) at z ! 1, which is dangerous to a precision calculation

since Dq!�(z ! 1) has substantial associated uncertainties. The Frixione algorithm avoids

these issues by removing the divergent regions of phase space that require the introduction

of a fragmentation function in the first place. The isolation parameters can then be set

so that no large perturbatively calculable logarithms appear. However, the smooth cone

cannot be implemented experimentally since it requires the energy in a small cone around

the photon to go literally to zero as that cone decreases in size. This di�culty may be

evaded by using a discretized or “staircase” version of the smooth cone [47, 48]. Although

sensitivity to the photon fragmentation function is thereby reintroduced, this sensitivity

can be maintained small while keeping the associated logarithms of manageable size, so as

to not call the accuracy of the fixed-order calculation into question.

Our staircase isolation approximates the smooth cone of eq. (4.1), which has parameters

(�, ✏) = (0.4, 0.5). We choose four nested cones (n = 1, 2, 3, 4) with radii R(n)
h = 0.1 ⇥ n,

and approximate the function I(R; ✏, �) of eq. (4.2) by a piecewise constant function

Î(R; ✏, �) = ✏

2

4

1� cos
⇣

1
2 [R

(n)
h +R(n�1)

h ]
⌘

1� cos �

3

5 ⌘ ✏(n)h , for R(n�1)
h < R < R(n)

h , (5.1)

where we define R(0)
h ⌘ 0. The constants ✏(n)h are shown in table 4; the functions I and Î
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Uncertainties 
 Full Budget 6 Discussion and summary

6.1 Uncertainty budget

E↵ect R1a R1b R1c Comments

(Z�/��) (ZZ/��) (ZZ/Z�)

qq ! V V qq 2–3% 3–3.5% 1.5–2.5% extrapolating pjT,min ! 0 (section 4.2)

µR, µF (gg) 0.5–1% 1% 1–2% uses NLO gg ! �� (section 4.5)

µR, µF (NLO) 0.5–1% 1.5–2.5% 1–1.5% varied independently (section 4.5)

PDF 0.5% 1–1.5% 0.5–1% MSTW 2008 using MCFM (section 4.5)

EW (LL) +2%
�1%

+3%
�1%

+2%
�1% EFT scale uncertainty (section 4.4.1)

↵QED 7% 14% 7% Fully correlated (section 4.4.2)

Table 6: Summary of overall uncertainty budget. The first three entries are not independent sources
of uncertainty, and combining them assuming no correlation provides a conservative estimate.

In section 2, we presented our claim that the three R1 ratios (whose central values

are related but which have di↵erent cancellations among their uncertainties) are under

exceptional theoretical control. Here we present a detailed breakdown of what we include in

our estimate of known theory uncertainties, as shown in table 6, and justify our confidence

in the small size of further higher-order e↵ects. We now review the table line by line.

The first three lines of table 6 are not truly independent, as they are all striving to cap-

ture aspects of the uncertainty associated with higher-order corrections to our calculations

of the ratios. Our goal in isolating them was to try to identify any particularly large e↵ects,

ones that would not show up in overall NLO scale variations, that we have not already

included and would not cancel in our ratios. Although the separation we have made is both

scheme and scale dependent and thus unphysical, our methods are probably su�cient to

estimate the rough magnitude of the higher-order corrections that we did not include. We

have also been quite conservative in our estimates and in how we combined uncertainties.

Once NNLO calculations of all diboson processes become publicly accessible, the remain-

ing uncertainties from all these sources should be subsumed in the scale variation of the

analogous NNLO calculations.

As we noted in section 4.2 above, many NNLO corrections are expected to cancel in

the R1 ratios. Valence quark scattering qq ! V 0
1 V

0
2 qq, which has terms that are not

proportional to the LO cross sections, gives one of the largest non-canceling terms that

we cannot currently compute. Our method for obtaining these estimates was described in

section 4.3.
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Conclusion 

• We have identified a set of ratios that rely on SU(2) 
structure already present in the SM 

• Many sources of theoretical uncertainties cancel for 
these ratios 

• This statement survives the QCD NLO corrections 
largely intact thanks to reasonable kinematic cuts. 

• Ratio σ(γγ)/σ(γΖ) can be measured very well (5%) at 300fb�1



Photon Jets at LHC 
(maybe 750 GeV)

Jakub Scholtz 
Harvard University

with SD Ellis, T Roy 
arxiv:1210.1855, 1210.3657

Figure 2: At leading order, diboson processes proceed from qq̄ initial states. The t, u channels
(left) and the s channel (right) contribute only to particular amplitudes under SU(2)⇥ U(1).

There are also quintet ww states, such as W+W+, but they require two final-state jets at

LO, whereas we will focus on production with no jets at LO. This means we only deal at

LO with three SU(2)-singlet qq̄ initial states

|uRūRi , |dRd̄Ri , |uLūLi � |dLd̄Li , (3.5)

and the triplet of states

�

|uLd̄Li , |uLūLi+ |dLd̄Li , |dLūLi
 

. (3.6)

Production rates at LO involve s-, t-, u-channel Feynman diagrams. The s-channel

diagram, with an fabc symbol, only contributes for ww3 states. Because of this, the LO

production rates for xx, wx, and ww1 are proportional, di↵ering only in the coupling

constants.

This suggests that symmetries should exist among the observable cross sections of interest

�(pp ! V1V2). To determine the implications more precisely, we must take into account

the production of scalars (e.g., the �3 inside Z), the interference between di↵erent channels

(e.g., since W�� is a superposition of wx and ww3), and the convolution with PDFs.

Since the quark-scalar couplings are proportional to quark masses, we can neglect scalar

production in the t- and u-channel diagrams, so the scalars contribute only to triplet

processes. When final-state scalars do contribute, they do so in the spin-sum of squared

helicity-amplitudes, so there are no associated interference e↵ects.

3.2 Squared amplitudes

The production of dibosons in the limit in which their masses can be neglected can be

written in a simple form. We will denote the coupling-stripped LO singlet-, triplet- and

scalar amplitudes by

a1 / M(xx) / M(wx) / M(ww1) , (3.7)

a3 / M(ww3) , (3.8)

a� / M(��) , (3.9)

in a notation which corresponds to eqs. (3.1)–(3.4). In these schematic definitions, we

leave polarizations implicit since we will always compute spin-averaged cross sections. The

– 8 –

INFN - Frascati 
03/02/2016



There is an excess of events with two photons with invariant mass 
around 750 GeV in both ATLAS and CMS
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Since the previous run, we have seen an energy and parton 
luminosity increase.

Given we have not seen a large excess in the previous (8TeV) 
run, it is most likely that the gg channel is responsible.

However, this is hard (not impossible) to hide because the loop 
suppressed photon decay mode is subleading to the allowed 
tree-level processes.
Although there are about 174 papers that say otherwise.



In order to make this 750GeV resonance couple to photons 
directly, we can postulate these photons are not just single 
photons, but instead two (or more) collimated photons.

This has been suggested by several sets of authors

1512.04928: Knapen, Melia, Papucci, Zurek 
1512.05775: Agrawal, Fan, Heidenreich, Reece, Strassler 
1512.06671: Chang, Cheung, Chih-Ting



These objects are called Photon-jets
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Photon-jet

- a collection of two or more collinear photons, that form a jet like
deposition in the calorimeters
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We will try to separate these three categories:

Photon-Jet

Photon QCD-Jet
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Part of the Answer

I If we want to compare QCD-jets, photon-jets and photons, we need a
common basis.

I Right now, we search for photons one way (use seeds, calorimeter
towers, etc.), for QCD-jets another way (jet algorithms) and don’t
look for photon-jets at all.

I Instead, search for jets and then tag each of them as either a
QCD-jet, a photon or a photon-jet, based on their properties.

Jets =

8
><

>:
, , , . . .

9
>=

>;
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Discriminants

These discriminants will be used in a multivariate analysis (TMVA) to
separate all three populations:

I Conventional
I Fraction of Hadronic Energy in the Jet
I Number of Charged Tracks

I N-subjettiness
I More Substructure

I Energy-Energy Correlation
I Subjet Spread
I Leading subjet p

T
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Fraction of Hadronic Energy in the Jet

Measures the fraction of hadronic energy in a jet, ✓ = E
had

/E
total
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Number of Charged Tracks

I Counts the number of charged tracks with p
T

> 2 GeV associated
with the jet.

I We determine if a track is associated with a jet by including its
softened four-vector with all the calorimeter four-vectors.
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N-subjettiness

I Take a jet. Find N subjets. This defines N axes.

I Form a sum:

⌧
N

=
1

d0

X

k

p
T ,k min {�R1,k , . . . ,�R

N,k}

where k runs over all the constituents of a jet and �R
i,k is the angular

distance between k-th constituent and the i-th subjet.
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Leading Subjet Transverse Momentum

Lp
T

=
p
T

of the hardest subjet

p
T

of the entire jet

Since QCD is characterized by soft radiation we expect the leading subjet
will contain most of the p

T

of the jet.

-2.5 -2.0 -1.5 -1.0 -0.5 0.0
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

LogH1-LpT HCALL

Fr
eq
ue
nc
y

dominated by one subjet

CA

g
jg H5,1L
jg H10,0.5L
jQCD

-2.5 -2.0 -1.5 -1.0 -0.5 0.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

LogH1-LpT HkTLL

Fr
eq
ue
nc
y

dominated by one subjet

kT

g
jg H5,1L
jg H10,0.5L
jQCD

J. Scholtz Photon-Jets November 6, 2014 21 / 36



Energy-Energy Correlation

X
E 2 =

X

i<j

E
i

E
j

/E 2
total

Relates to the variance of energy distribution amongst the subjets.
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There are more possible discriminants, 
but these do most of the work
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Separating Photon-Jets and QCD-Jets

We train a BDT to separate photon-jets from QCD-jets
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Separating Photon-Jets and Photons

We train another BDT to separate Photon-Jets from Photons
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Separating Photons, Photon-Jets and QCD

I We use two BDTs to
extract as much
information as possible.

I Split QCD-jets away
with only Conventional
variables.

I Split Photons from
photon-jets with just
Substructure.

I QCD-jets
photons
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Conclusion

• Photon-jets are objects worth thinking about                            
(whether they are the source of 750 GeV excess or not) 

• We can expect some excitement in this field 

• Our (theorist’s) study shows there might be room for 
improvement. 

• I would love to see people who truly understand the 
calorimeter to work on this (neutral pion - photon 
discrimination experts)



Back Up Slides



Pushing Particles through the Calorimeter

1. Use Pythia 8 to generate both signal and
background events (Turn on ISR, FSR and
MI).

2. Deposit particle energy according to their
type and momenta. (We simulate
transverse showers for photons - the pattern
on the right corresponds to Molière radius
in Pb)

3. Recover massless four-vectors from
(⌘,�,E ) of each cell in both calorimeters.

4. Find jets in the union of all four vectors
with Anti-k

T

, �R = 0.4, p
T

> 50 GeV.

Energy deposition pattern for

photons in the EM calorimeter.
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More study points

Photon-jet vs QCD, (Our example is PJSP6)
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sions that occur in the same time window). Indeed, the
recent results from studies at ATLAS [18] and CMS [19]
indicate this grooming is e↵ective. We expect that this
substructure-based grooming will work as well for all
ECal based objects.

It should be noted that in the context of Higgs physics,
the decay to photon-jets is not the only example where
the collinearity of the decay products adds complexity to
the analysis. Collinearity plays a role for traditional de-
cays of the Higgs boson when it is boosted. In Ref. [10],
the authors exploited the collinearity of the b-quarks in
boosted Higgs decays (both quarks in a single jet) to
greatly enhance the chances of detecting the h ! bb̄
channel, featuring jet substructure as a mainstream tool
(see also Refs. [7–9]). The application of jet substruc-
ture in Higgs physics has now become a very active area
of research, applied both to the SM Higgs [20–22] as
well to beyond the SM Higgs scenarios [23–28]. For
reviews, more detailed descriptions, and references see
Refs. [29, 30].

The paper is organized as follows: in Sec. II, we start
with a simplified model for photon-jets. We propose a set
of benchmark points, where we take di↵erent combina-
tions of masses and parameters in the simplified model
to produce photon-jets displaying a variety of distinct
kinematics. In Sec. III we define the details of our simu-
lation. We describe, in detail, how we generate samples
of photon-jets, one for each of the benchmark points,
QCD-jets, and single photons. We present our analy-
sis in Sec. IV. We describe all the variables that we use
in this work to discriminate photon-jets from QCD-jets
from single photons. Then we combine these variables
in a multivariate analysis. We train boosted decision
trees (BDTs) using the samples of jets and use these to
optimize the discriminating power of our analyses. We
also show how these BDTs can be used to simultaneously
separate photon-jets, photons, and QCD-jets from each
other. Our conclusions are presented in Sec. V.

II. SIMPLE MODEL FOR PHOTON-JETS

By definition, photons-jets refer to calorimeter objects
consisting of more than one hard photon. However, such
a broad definition presents a challenge since all photon-
jets are not the same. They di↵er in terms of the number
of hard constituent photons as well as in the distribu-
tion of those photons within the photon-jet. To provide
a systematic phenomenological study of photon-jets we
classify these objects in more detail in terms of the pro-
duction mechanism and consider a broad range. We will
refer to the various production scenarios as ‘benchmark’
scenarios. We find that a simple model in the spirit of
Ref. [31] with two new particles is su�cient to charac-
terize these benchmarks. The model includes a small
number of interactions and we can vary the strength of
these interaction and the new particle masses in order
to generate the benchmark scenarios. In particular, we

introduce two scalar fields n1 and n2 of mass m1 and m2

respectively. Without loss of generality, we choose the
naming convention such that m1 > m2. Neither n1 nor
n2 carry any SM charges. We use the following interac-
tions to generate photon-jets

1

2
µhhn

2
1+

1

2
µ12n1n

2
2+

✓

⌘1
m1

n1 +
⌘2
m2

n2

◆

Fµ⌫Fµ⌫ , (1)

where µh, µ12 are mass parameters, ⌘1, ⌘2 are dimension-
less coupling constants, and Fµ⌫ is the electromagnetic
field strength operator.
This simple model bears a resemblance to a Higgs por-

tal scenario [32–34] because of the µh coupling. In the
Higgs portal language, n1 and n2 constitute a ‘hidden’
sector while the coupling µh provides a tunnel to the
corresponding ‘hidden valley’. The electromagnetic cou-
plings (proportional to the ⌘ parameters) provide ways
for the new particles to decay back to SM particles, pho-
tons in this case. With respect to Higgs physics, this
simple model provides a realistic example where the SM
Higgs field decays through the new particles to multiple
photons. In the limit m1 ⌧ mh, the resultant photons
(the decay products of n1) are essentially collinear.
In Table I we list the benchmark scenarios (labeled

photon-jet study points or PJSPs) that we investigate
in this work. All are generated by varying the parame-
ters in Eq.(1). The symbol X in Table I denotes that a
non-zero value is selected for that parameter, which then
determines the decay mode. We have chosen the bench-
marks in such a way that the parameters denoted by X
only change the total width of the decaying particles. As
long as the decays are prompt, the exact values of these
parameters are irrelevant to the phenomenological prop-
erties of the photon-jets. In all these study points we

Study Points
m1 m2 µ12 ⌘1 ⌘2(GeV) (GeV) (GeV)

PJSP 1 0.5
0 XPJSP 2 1.0

PJSP 3 10.0
PJSP 4 2.0 0.5

X 0 X
PJSP 5

5.0
0.5

PJSP 6 1.0
PJSP 7

10.0
0.5

PJSP 8 1.0

TABLE I. The study points used in our analysis. For
PJSP 1� 3, n2 does not participate in the decay chain since
µ12 = 0 and the m2 and ⌘2 columns are empty. By X we de-
note that a non-zero value is chosen for the parameter, which
facilitates prompt decays, but the specific value plays no role.

take the Higgs particle to decay to a pair of n1 parti-
cles. The small n1 mass (m1 ⌧ mh) ensures that the
decay products of the n1 are highly collimated. In the
Higgs particle rest frame, which is close to the labora-
tory frame on average, each n1 has momentum ⇠ mh/2
and the typical angular separation between the n1 decay
products is of the order of 4m1/mh. Note that, given


