Precision Diboson Observables for the LHC

Photon Jets at LHC (maybe 750 GeV excess)

Jakub Scholtz
Harvard University

INFN - LNF
03/02/2016

Precision Diboson Observables for the LHC

Jakub Scholtz
Harvard University

INFN - Frascati 03/02/2016
with Chris Frye,Marat Freytsis, Matt Strassler arxiv:1510.08451

- Not quite clear if there are any smoking guns. (Although 750 GeV excess looks promising)
- We can instead focus on precision measurements of the SM
- We need clever ways to cancel our major sources of uncertainty
- We already have a great symmetry that relates a set of process: $S U(2) \times U(1)$ of the electroweak force.
- We will explore ratios of processes with two bosons in the final state

$$
R=\frac{\sigma\left(p p \rightarrow V_{1} V_{2}\right)}{\sigma\left(p p \rightarrow V_{3} V_{4}\right)}
$$

Plan

- Leading Order
- Next-to-leading Order
- Theoretical Uncertainties
- Conclusion

Plan

- Leading Order
- Next-to-leading Order
- Theoretical Uncertainties
- Conclusion

Leading Order massless limit

In the large energy limit, $W^{ \pm}, Z$ become effectively massless.

It makes more sense to think in terms of the unbroken $\begin{array}{lc}\mathrm{SU}(2) \times(1) \text { vectors: } & w^{ \pm}, w^{3}, x \\ \text { Goldstone bosons: } & \phi^{ \pm}, \phi^{0}\end{array}$

Two bosons combine into isospin triplets and singlets:

$$
\begin{aligned}
x x_{\mathbf{1}} \equiv x x: & |x x\rangle, \\
w x_{\mathbf{3}} \equiv w x: & \left|w^{+} x\right\rangle, \quad\left|w^{3} x\right\rangle, \quad\left|w^{-} x\right\rangle \\
w w_{\mathbf{1}}: & \left|w^{+} w^{-}\right\rangle+\left|w^{-} w^{+}\right\rangle-\left|w^{3} w^{3}\right\rangle, \\
w w_{\mathbf{3}}: & \left|w^{+} w^{3}\right\rangle-\left|w^{3} w^{+}\right\rangle, \quad\left|w^{+} w^{-}\right\rangle-\left|w^{-} w^{+}\right\rangle, \quad\left|w^{3} w^{-}\right\rangle-\left|w^{-} w^{3}\right\rangle
\end{aligned}
$$

Leading Order massless limit

a_{1}

a_{3}, a_{L}
$a_{1} \sim \mathcal{M}(x x) \sim \mathcal{M}(x w) \sim \mathcal{M}\left(w w_{1}\right)$
$a_{3} \sim \mathcal{M}\left(w w_{3}\right)$
$a_{\phi} \sim \mathcal{M}(\phi \phi)$

Leading Order

finite mass

$$
\left|a_{1}\right|^{2}=\frac{\hat{t}}{\hat{u}}+\frac{\hat{u}}{\hat{t}} \Rightarrow\left|\mathcal{A}_{1}\right|^{2}=\left(\hat{t} \hat{u}-m_{1}^{2} m_{2}^{2}\right)\left(\frac{1}{\hat{t}^{2}}+\frac{1}{\hat{u}^{2}}\right)+\frac{2 \hat{s}\left(m_{1}^{2}+m_{2}^{2}\right)}{\hat{t} \hat{u}}
$$

Similarly:

$$
\begin{aligned}
&\left(\mathcal{A}_{1} \mathcal{A}_{3}\right)=\left(N_{T}^{\ell} P_{s}\right)(\hat{T} \hat{U})\left(\frac{1}{\hat{u}}-\frac{1}{\hat{t}}\right)+\frac{1}{4}\left(\hat{t} \hat{u}-m_{1}^{2} m_{2}^{2}\right)\left(\frac{1}{\hat{u}^{2}}-\frac{1}{\hat{t}^{2}}\right) \\
&\left|\mathcal{A}_{3}^{h}\right|^{2}=\left(N_{T}^{h} P_{s}\right)^{2}(\hat{T} \hat{U})+ \\
&+\delta_{h \ell}\left[\frac{\left(N_{T}^{\ell} P_{s}\right)}{4}(\hat{T} \hat{U})\left(\frac{1}{\hat{t}}+\frac{1}{\hat{u}}\right)\right. \\
&\left.+\frac{1}{32}\left(\hat{t} \hat{u}-m_{1}^{2} m_{2}^{2}\right)\left(\frac{1}{\hat{t}^{2}}+\frac{1}{\hat{u}^{2}}\right)-\frac{1}{16} \frac{\hat{s}\left(m_{1}^{2}+m_{2}^{2}\right)}{\hat{t} \hat{u}}\right] \\
&\left|\mathcal{A}_{\phi}^{h}\right|^{2}=\left(N_{\phi}^{h} P_{s}\right)^{2}\left[\hat{t} \hat{u}+2 \hat{s}\left(m_{1}^{2}+m_{2}^{2}\right)-m_{1}^{2} m_{2}^{2}\right]
\end{aligned}
$$

Leading Order
 $\gamma \mathrm{\gamma}, \mathrm{YZ}, \mathrm{ZZ}$

From now on I choose to only focus on: $\gamma \mathcal{Y}, \mathrm{Y}, \mathrm{ZZ}$

Similar analyses can be performed on all the other channels

- $R_{1 a}=\frac{\sigma_{S}(Z \gamma)}{\sigma_{S}(\gamma \gamma)}, \quad R_{1 b}=\frac{\sigma_{S}(Z Z)}{\sigma_{S}(\gamma \gamma)}, \quad R_{1 c}=\frac{\sigma_{S}(Z Z)}{\sigma_{S}(Z \gamma)}$,
- $C_{2 a}=\frac{\sigma_{S}\left(W^{+} \gamma\right)}{\sigma_{S}\left(W^{-} \gamma\right)}, \quad C_{2 b}=\frac{\sigma_{S}\left(W^{+} Z\right)}{\sigma_{S}\left(W^{-} Z\right)}, \quad D_{2 a}=\frac{\sigma_{A}\left(W^{+} \gamma\right)}{\sigma_{A}\left(W^{-} \gamma\right)}, \quad D_{2 b}=\frac{\sigma_{A}\left(W^{+} Z\right)}{\sigma_{A}\left(W^{-} Z\right)}$,
$R_{2}^{ \pm}=\frac{\sigma_{S}\left(W^{ \pm} Z\right)}{\sigma_{S}\left(W^{ \pm} \gamma\right)}, \quad A_{2}^{ \pm}=\frac{\sigma_{A}\left(W^{ \pm} Z\right)}{\sigma_{A}\left(W^{ \pm} \gamma\right)}$,
- $R_{3}=\frac{\sigma_{S}\left(W^{+} W^{-}\right)}{\sigma_{S}\left(V_{1}^{0} V_{2}^{0}\right)}, \quad A_{3}=\frac{\sigma_{A}\left(W^{+} W^{-}\right)}{\sigma_{A}\left(W V^{0}\right)}$,

Leading Order Partonic cross-sections: $\gamma\rangle, \gamma Z, Z Z$

After EW breaking: $\quad V_{i}^{0} V_{j}^{0} \sim x x, w^{3} x, w^{3} w^{3}$
All the neutral dibosons processes are proportional

$$
\frac{d \hat{\sigma}}{d \hat{t}}\left(q \bar{q} \rightarrow V_{1}^{0} V_{2}^{0}\right)=\frac{C_{12}^{q}}{\hat{s}^{2}}\left|a_{1}\right|^{2}
$$

with

$$
C_{\gamma \gamma}^{q}=\frac{1}{2} \frac{\pi \alpha_{2}^{2} s_{W}^{4}}{N_{c}} 2 Q^{4},
$$

$$
C_{Z \gamma}^{q}=\frac{\pi \alpha_{2}^{2} s_{W}^{2} c_{W}^{2}}{N_{c}}\left(L^{2} Q^{2}+R^{2} Q^{2}\right)
$$

$$
L=T_{3}-Y_{L} t_{W}^{2}
$$

$$
R=-Y_{R} t_{W}^{2}
$$

$$
C_{Z Z}^{q}=\frac{1}{2} \frac{\pi \alpha_{2}^{2} c_{W}^{4}}{N_{c}}\left(L^{4}+R^{4}\right)
$$

Leading Order PDF convolutions: $\gamma \gamma, \gamma Z, Z Z$

Going to transverse momentum differential distribution

$$
\sigma_{p p \rightarrow 12}=\sum_{q} \int \frac{d \hat{s}}{s} \int d m_{t} \frac{d \hat{\sigma}_{q \bar{q}+12}}{d m_{T}} \int d y f_{q} f_{\bar{q}}
$$

We can define weighted parton luminosity

$$
\frac{d \sigma_{p p \rightarrow 12}}{d \hat{s}}=\frac{1}{s} \int d m_{T}\left|\frac{d \hat{t}}{d m_{T}}\right| \frac{\left|A_{1}\right|^{2}}{\hat{s}^{2}} \underbrace{\sum_{q} C_{q \bar{q} \rightarrow 12} \int d y f_{q} f_{\bar{q}}}_{\mathcal{L}_{12}(\hat{s})}
$$

Leading Order Predictions for ratios of $\gamma \gamma, \gamma Z, Z Z$

$$
\left[\frac{d \sigma_{p p \rightarrow Z \gamma}}{d \sigma_{p p \rightarrow \gamma \gamma}}\right]_{\hat{s}}=\frac{\mathcal{L}_{Z \gamma}(\hat{s})}{\mathcal{L}_{\gamma \gamma}(\hat{s})}\left(1+\frac{m_{Z}^{2}}{\hat{s}}+\cdots\right)
$$

$V_{1}^{0} V_{2}^{0}$	$C_{12}^{u} \cdot 10^{5}$	$C_{12}^{d} \cdot 10^{5}$
$\gamma \gamma$	1.2	0.07
$Z \gamma$	2.2	0.7
$Z Z$	1.6	3.3

Plan

- Leading Order
- Next-to-leading Order
- Theoretical Uncertainties
- Conclusion

keeping the LO kinematics

- Although we expect sizable corrections to the crosssections themselves (large-ish) K-factors, all processes receive the same corrections
- This is thanks to our cuts that keep NLO kinematics similar to the LO kinematics (no new phase space is open).

$$
\begin{aligned}
& p_{T}\left(V_{1}\right)<2 p_{T}\left(V_{2}\right) \\
& p_{T}\left(V_{2}\right)>2 H_{T}
\end{aligned}
$$

No large logs

NLO
 dealing with photon isolation

- The one place where Z and γ are different is in the collinear radiation from a quark line.
- We remove this divergence by a Staircase isolation - an
 experimentally implementable variation on Frixione isolation.

including the NNLO gg->VV

- Although the gg initial state only contributes at NNLO it is numerically important at smaller energies.
- We set the scales using the publicly known partial calculation of NNNLO for this process.

The Plot I

The Plot II

Plan

- Leading Order
- Next-to-leading Order
- Theoretical Uncertainties
- Conclusion

Uncertainties PDFs

This is where we reap the benefits of our work

Uncertainties QCD Scales

Uncertainties Full Budget

Effect	$R_{1 a}$ $(Z \gamma / \gamma \gamma)$	$R_{1 b}$ $(Z Z / \gamma \gamma)$	$R_{1 c}$ $(Z Z / Z \gamma)$	Comments
$q q \rightarrow V V q q$	$2-3 \%$	$3-3.5 \%$	$1.5-2.5 \%$	extrapolating $p_{T, \text { min }}^{j} \rightarrow 0$ (section 4.2)
$\mu_{R}, \mu_{F}(g g)$	$0.5-1 \%$	1%	$1-2 \%$	uses NLO $g g \rightarrow \gamma \gamma$ (section 4.5)
$\mu_{R}, \mu_{F}(\mathrm{NLO})$	$0.5-1 \%$	$1.5-2.5 \%$	$1-1.5 \%$	varied independently (section 4.5)
PDF	0.5%	$1-1.5 \%$	$0.5-1 \%$	MSTW 2008 using MCFM (section 4.5)
EW (LL)	${ }_{-1 \%}^{+2 \%}$	${ }_{-1 \%}^{+3 \%}$	${ }_{-1 \%}^{+2 \%}$	EFT scale uncertainty (section 4.4.1)
$\alpha_{\text {QED }}$	7%	14%	7%	Fully correlated (section 4.4.2)

Conclusion

- We have identified a set of ratios that rely on $\operatorname{SU}(2)$ structure already present in the SM
- Many sources of theoretical uncertainties cancel for these ratios
- This statement survives the QCD NLO corrections largely intact thanks to reasonable kinematic cuts.
- Ratio $\sigma(\gamma \gamma) / \sigma(\gamma Z)$ can be measured very well (5\%) at $300 \mathrm{fb}^{-1}$

Photon Jets at LHC (maybe 750 GeV)

Jakub Scholtz

Harvard University

INFN - Frascati 03/02/2016

There is an excess of events with two photons with invariant mass around 750 GeV in both ATLAS and CMS

2.6σ

Since the previous run, we have seen an energy and parton luminosity increase.

$$
\begin{array}{ccccccc}
r_{b \bar{b}} & r_{c \bar{c}} & r_{s \bar{s}} & r_{d \bar{d}} & r_{u \bar{u}} & r_{g g} & r_{\gamma \gamma} \\
\hline 5.4 & 5.1 & 4.3 & 2.7 & 2.5 & 4.7 & 1.9
\end{array}
$$

Given we have not seen a large excess in the previous (8TeV) run, it is most likely that the gg channel is responsible.

However, this is hard (not impossible) to hide because the loop suppressed photon decay mode is subleading to the allowed tree-level processes.
Although there are about 174 papers that say otherwise.

In order to make this 750 GeV resonance couple to photons directly, we can postulate these photons are not just single photons, but instead two (or more) collimated photons.

This has been suggested by several sets of authors
1512.04928: Knapen, Melia, Papucci, Zurek 1512.05775: Agrawal, Fan, Heidenreich, Reece, Strassler 1512.06671: Chang, Cheung, Chih-Ting

These objects are called Photon-jets

they have a history

[21] B. A. Dobrescu, G. L. Landsberg, and K. T. Matchev, "Higgs boson decays to CP odd scalars at the Tevatron and beyond," Phys. Rev. D63 (2001) 075003, arXiv:hep-ph/0005308 [hep-ph].
[22] S. Chang, P. J. Fox, and N. Weiner, "Visible Cascade Higgs Decays to Four Photons at Hadron Colliders," Phys. Rev. Lett. 98 (2007) 111802, arXiv:hep-ph/0608310 [hep-ph].
[23] N. Toro and I. Yavin, "Multiphotons and photon jets from new heavy vector bosons," Phys. Rev. D86 (2012) 055005, arXiv:1202.6377 [hep-ph].
[24] P. Draper and D. McKeen, "Diphotons from Tetraphotons in the Decay of a 125 GeV Higgs at the LHC," Phys. Rev. D85 (2012) 115023, arXiv:1204.1061 [hep-ph].
[25] S. D. Ellis, T. S. Roy, and J. Scholtz, "Jets and Photons," Phys. Rev. Lett. 110 no. 12, (2013) 122003, arXiv:1210.1855 [hep-ph].
[26] S. D. Ellis, T. S. Roy, and J. Scholtz, "Phenomenology of Photon-Jets," Phys. Rev. D87 no. 1, (2013) 014015, arXiv:1210.3657 [hep-ph].

they have been looked for

ATLAS Collaboration, "Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using $4.9 \mathrm{fb}^{-1}$ of $7 \mathrm{TeV} p p$ collision data taken with ATLAS detector at the LHC,".

Plan

- Define photon-jets
- Define discriminants
- Show results
- Conclude

Photon-jet

- a collection of two or more collinear photons, that form a jet like deposition in the calorimeters

We will try to separate these three categories:

Photon-Jet

Photon

QCD-Jet

- If we want to compare QCD-jets, photon-jets and photons, we need a common basis.
- Right now, we search for photons one way (use seeds, calorimeter towers, etc.), for QCD-jets another way (jet algorithms) and don't look for photon-jets at all.
- Instead, search for jets and then tag each of them as either a QCD-jet, a photon or a photon-jet, based on their properties.

Plan

- Define Photon Jets
- Define discriminants
- Show results
- Conclude

These discriminants will be used in a multivariate analysis (TMVA) to separate all three populations:

- Conventional
- Fraction of Hadronic Energy in the Jet
- Number of Charged Tracks
- N-subjettiness
- More Substructure
- Energy-Energy Correlation
- Subjet Spread
- Leading subjet p_{T}

Fraction of Hadronic Energy in the Jet

Measures the fraction of hadronic energy in a jet, $\theta=E_{\text {had }} / E_{\text {total }}$

Number of Charged Tracks

- Counts the number of charged tracks with $p_{T}>2 \mathrm{GeV}$ associated with the jet.
- We determine if a track is associated with a jet by including its softened four-vector with all the calorimeter four-vectors.

N -subjettiness

- Take a jet. Find N subjets. This defines N axes.
- Form a sum:

$$
\tau_{N}=\frac{1}{d_{0}} \sum_{k} p_{T, k} \min \left\{\Delta R_{1, k}, \ldots, \Delta R_{N, k}\right\}
$$

where k runs over all the constituents of a jet and $\Delta R_{i, k}$ is the angular distance between k-th constituent and the i-th subjet.

Leading Subjet Transverse Momentum

$$
L p_{T}=\frac{p_{T} \text { of the hardest subjet }}{p_{T} \text { of the entire jet }}
$$

Since QCD is characterized by soft radiation we expect the leading subjet will contain most of the p_{T} of the jet.

Energy-Energy Correlation

$$
\sum E^{2}=\sum_{i<j} E_{i} E_{j} / E_{t o t a l}^{2}
$$

Relates to the variance of energy distribution amongst the subjets.

There are more possible discriminants, but these do most of the work

Plan

- Define Photon Jets
- Define discriminants
- Show results
- Conclude

Separating Photon-Jets and QCD-Jets

We train a BDT to separate photon-jets from QCD-jets

Separating Photon-Jets and Photons

We train another BDT to separate Photon-Jets from Photons

Separating Photons, Photon-Jets and QCD

- We use two BDTs to extract as much information as possible.
- Split QCD-jets away with only Conventional variables.
- Split Photons from photon-jets with just Substructure.
- QCD-jets photons photon-jets.

Plan

- Define Photon Jets
- Define discriminants
- Show results
- Conclude

Conclusion

- Photon-jets are objects worth thinking about (whether they are the source of 750 GeV excess or not)
- We can expect some excitement in this field
- Our (theorist's) study shows there might be room for improvement.
- I would love to see people who truly understand the calorimeter to work on this (neutral pion - photon discrimination experts)

Back Up Slides

Pushing Particles through the Calorimeter

1. Use Pythia 8 to generate both signal and background events (Turn on ISR, FSR and MI).
2. Deposit particle energy according to their type and momenta. (We simulate transverse showers for photons - the pattern on the right corresponds to Molière radius in Pb)
3. Recover massless four-vectors from (η, ϕ, E) of each cell in both calorimeters.
4. Find jets in the union of all four vectors with Anti- $k_{T}, \Delta R=0.4, p_{T}>50 \mathrm{GeV}$.

Energy deposition pattern for photons in the EM calorimeter.

More study points

Photon-jet vs QCD, (Our example is PJSP6)

Study Points	$\begin{gathered} m_{1} \\ (\mathrm{GeV}) \end{gathered}$	$\begin{gathered} m_{2} \\ (\mathrm{GeV}) \end{gathered}$	$\begin{gathered} \mu_{12} \\ (\mathrm{GeV}) \\ \hline \end{gathered}$	η_{1}	η_{2}
PJSP 1	0.5				
PJJSP 2	1.0		0	X	
PJSP 3	10.0				
PJSP 4	2.0	0.5			
PJSP 5 PJSP 6	5.0	0.5	X	0	X
PJSP 7		0.5			
PJSP 8	10.0	1.0			

