Heavy flavour decay and fragmentation with the Analityc Coupling model

Giancarlo Ferrera

ferrera@fi.infn.it

Università di Firenze

In collaboration with:

U. Aglietti, G. Corcella, F. Di Lodovico, L. Di Giustino, G. Ricciardi & L. Trentadue arXiv:0711.0860; hep-ph/0612073; hep-ph/0610035; hep-ph/0608047

Outline

- 1 Inclusive B decays
- 2 Analytic QCD coupling
- 3 b-quark fragmentation
- Phenomenological Analysis
- **5** Conclusions and Perspectives

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

Semileptonic charmless decay:

 $B \rightarrow X_u + I + \bar{\nu}$

- Energy scales: $m_b \ge E_X \ge m_X$, $Q = E_X + \sqrt{E_X^2 m_X^2}$
- To avoid the ~ 50 times larger $B \rightarrow X_c l \nu$ background kinematic cuts are necessary: $m_X < m_D \simeq (1.8 \, GeV)$, $E_l > (m_B^2 - m_D^2)/2m_B$, $q^2 > (m_B - m_D)^2$
- This means $m_X \sim \sqrt{E_X \Lambda_{QCD}} \ll E_X$, $(E_X \sim O(m_B), m_X \gg \Lambda_{QCD})$.

Threshold region \Rightarrow pQCD resummation and modelling Fermi motion

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

∃ → < ∃</p>

< 17 ▶

Heavy flavour decay and fragmentation with the Analityc Coupling model

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

• Energy scales: $m_b \ge E_X \ge m_X$, $Q = E_X + \sqrt{E_y^2 - m_y^2}$

- To avoid the \sim 50 times larger $B \rightarrow X_c l \nu$ background kinematic cuts
- This means $m_X \sim \sqrt{E_X \Lambda_{QCD}} \ll E_X$, $(E_X \sim O(m_B), m_X \gg \Lambda_{QCD})$.

Giancarlo Ferrera – Università di Firenze

(4回) (日) (日) VI Meeting on B physics - Ferrara - 19/3/2009

Heavy flavour decay and fragmentation with the Analityc Coupling model

3

• Energy scales: $m_b \ge E_X \ge m_X, \quad Q = E_X + \sqrt{E_X^2 - m_X^2}$

- To avoid the ~ 50 times larger B→X_clν background kinematic cuts are necessary: m_X < m_D ≃(1.8GeV), E_l>(m²_B-m²_D)/2m_B, q²>(m_B-m_D)²
- This means $m_X \sim \sqrt{E_X \Lambda_{QCD}} \ll E_X$, $(E_X \sim O(m_B), m_X \gg \Lambda_{QCD})$.

Threshold region \Rightarrow pQCD resummation and modelling Fermi motion

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

∃ → < ∃</p>

< 口 > < 同 >

Heavy flavour decay and fragmentation with the Analityc Coupling model

• Energy scales: $m_b \ge E_X \ge m_X$, $Q = E_X + \sqrt{E_X^2 - m_X^2}$

• To avoid the ~ 50 times larger $B \rightarrow X_c l \nu$ background kinematic cuts are necessary: $m_X < m_D \simeq (1.8 \, GeV)$, $E_l > (m_B^2 - m_D^2)/2m_B$, $q^2 > (m_B - m_D)^2$

• This means $m_X \sim \sqrt{E_X \Lambda_{QCD}} \ll E_X$, $(E_X \sim O(m_B), m_X \gg \Lambda_{QCD})$.

Threshold region \Rightarrow pQCD resummation and modelling Fermi motion

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

< 口 > < 同

Heavy flavour decay and fragmentation with the Analityc Coupling model

- Energy scales: $m_b \ge E_X \ge m_X$, $Q = E_X + \sqrt{E_X^2 m_X^2}$
- To avoid the ~ 50 times larger $B \rightarrow X_c l\nu$ background kinematic cuts are necessary: $m_X < m_D \simeq (1.8 \, \text{GeV}), \quad E_l > (m_B^2 - m_D^2)/2m_B, \quad q^2 > (m_B - m_D)^2$
- This means $m_X \sim \sqrt{E_X \Lambda_{QCD}} \ll E_X$, $(E_X \sim O(m_B), m_X \gg \Lambda_{QCD})$.

Threshold region \Rightarrow pQCD resummation and modelling Fermi motion

- Energy scales: $m_b \ge E_X \ge m_X$, $Q = E_X + \sqrt{E_X^2 m_X^2} \simeq 2E_X$
- To avoid the ~ 50 times larger $B \rightarrow X_c l\nu$ background kinematic cuts are necessary: $m_X < m_D \simeq (1.8 \, GeV)$, $E_l > (m_B^2 - m_D^2)/2m_B$, $q^2 > (m_B - m_D)^2$
- This means $m_X \sim \sqrt{E_X \Lambda_{QCD}} \ll E_X$, $(E_X \sim O(m_B), m_X \gg \Lambda_{QCD})$.

Threshold region \Rightarrow pQCD resummation and modelling Fermi motion.

Inclusive *B* decays: factorization

• Resummation formula for radiative decays:

$$\frac{1}{\Gamma_r}\frac{d\Gamma_r}{dt} = C_r[\alpha_S(Q)]\sigma[t;\alpha_S(Q)] + d_r[t;\alpha_S(Q)],$$

where $t \equiv m_X^2/m_b^2$ and $Q = 2 E_X$. $Q = m_b(1 + m_X^2/m_b^2) \simeq m_b$, $\alpha_S(Q) \simeq \alpha_S(m_b) \simeq 0.22$.

• Resummation formula for semileptonic charmless decays [Aglietti ('01)]:

 $\frac{1}{\Gamma_s}\frac{d^3\Gamma_s}{dxdudw} = C_s[x, w; \alpha_s(Q)] \sigma[u; \alpha_s(Q)] + d_s[x, u, w; \alpha_s(Q)]$

where $x \equiv \frac{2E_l}{m_b}$, $w \equiv \frac{2E_\chi}{m_b}$, $u \equiv \frac{1-\sqrt{1-4y}}{1+\sqrt{1-4y}}$, $y \equiv \frac{m'_\chi}{Q^2} = \frac{m'_\chi}{4E'_\chi}$. $Q = m_b(1 + m_\chi^2/m_b^2 - q^2/m_b^2)$; q^2 is the dilepton invariant mass

We can not put $\alpha_S(Q) \simeq \alpha_S(m_b)$ in the form factor σ : $\alpha_S(Q) = \alpha_S(wm_b)$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

< 17 >

Heavy flavour decay and fragmentation with the Analityc Coupling model

3

Inclusive *B* decays: factorization

• Resummation formula for radiative decays:

$$\frac{1}{\Gamma_r}\frac{d\Gamma_r}{dt} = C_r[\alpha_S(Q)]\sigma[t;\alpha_S(Q)] + d_r[t;\alpha_S(Q)],$$

where $t \equiv m_X^2/m_b^2$ and $Q = 2 E_X$. $Q = m_b(1 + m_X^2/m_b^2) \simeq m_b$, $\alpha_S(Q) \simeq \alpha_S(m_b) \simeq 0.22$.

• Resummation formula for semileptonic charmless decays [Aglietti ('01)]:

 $\frac{1}{\Gamma_s}\frac{d^3\Gamma_s}{dxdudw} = C_s[x,w;\alpha_S(Q)] \sigma[u;\alpha_S(Q)] + d_s[x,u,w;\alpha_S(Q)]$

where
$$x \equiv \frac{2E_l}{m_b}$$
, $w \equiv \frac{2E_X}{m_b}$, $u \equiv \frac{1-\sqrt{1-4y}}{1+\sqrt{1-4y}}$, $y \equiv \frac{m_X^2}{Q^2} = \frac{m_X^2}{4E_X^2}$.
 $Q = m_b(1 + m_X^2/m_b^2 - q^2/m_b^2)$; q^2 is the dilepton invariant mass.

We can not put $\alpha_s(Q) \simeq \alpha_s(m_b)$ in the form factor σ : $\alpha_s(Q) = \alpha_s(wr)$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

< 17 ▶

Heavy flavour decay and fragmentation with the Analityc Coupling model

3

Inclusive *B* decays: factorization

• Resummation formula for radiative decays:

$$\frac{1}{\Gamma_r}\frac{d\Gamma_r}{dt} = C_r[\alpha_S(Q)]\sigma[t;\alpha_S(Q)] + d_r[t;\alpha_S(Q)],$$

where $t \equiv m_X^2/m_b^2$ and $Q = 2 E_X$. $Q = m_b(1 + m_X^2/m_b^2) \simeq m_b$, $\alpha_S(Q) \simeq \alpha_S(m_b) \simeq 0.22$.

• Resummation formula for semileptonic charmless decays [Aglietti ('01)]:

$$\frac{1}{\Gamma_s}\frac{d^3\Gamma_s}{dxdudw} = C_s[x,w;\alpha_s(Q)] \sigma[u;\alpha_s(Q)] + d_s[x,u,w;\alpha_s(Q)]$$

where $x \equiv \frac{2E_l}{m_b}$, $w \equiv \frac{2E_\chi}{m_b}$, $u \equiv \frac{1-\sqrt{1-4y}}{1+\sqrt{1-4y}}$, $y \equiv \frac{m_\chi^2}{Q^2} = \frac{m_\chi^2}{4E_\chi^2}$. $Q = m_b(1 + m_\chi^2/m_b^2 - q^2/m_b^2)$; q^2 is the dilepton invariant mass.

We can not put $\alpha_{S}(Q) \simeq \alpha_{S}(m_{b})$ in the form factor $\sigma: \alpha_{S}(Q) = \alpha_{S}(wm_{b})$.

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

Inclusive *B* decays: Threshold resummation

In the Mellin space the threshold resummed form factor reads [Sterman ('87), Catani & Trentadue ('89)]:

$$\ln \sigma_{N} = \int_{0}^{1} \frac{(1-y)^{N-1}-1}{y} \left\{ \int_{Q^{2}y^{2}}^{Q^{2}y} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} A[\alpha_{S}(k_{\perp}^{2})] + B[\alpha_{S}(Q^{2}y)] + D[\alpha_{S}(Q^{2}y^{2})] \right\}$$

where
$$A(\alpha_S) = \sum_{n=1}^{\infty} A_n \alpha_S^n$$
, $B(\alpha_S) = \sum_{n=1}^{\infty} B_n \alpha_S^n$, $D(\alpha_S) = \sum_{n=1}^{\infty} D_n \alpha_S^n$.

When $y = \frac{m_V}{Q^2} \rightarrow 0$ this formula involves $\alpha_S(k_{\perp}^2)$ evaluated at the Landau pole: it is necessary a prescription (outside pQCD), f.i. the Minimal Prescription [Catani, Mangano, Nason & Trentadue ('96)].

ldea: introduce non-perturbative effects (Fermi motion) in the resummation formula using an effective coupling without the Landau pole [Aglietti, Ricciardi ('04),Aglietti,G.F., Ricciardi ('06)].

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

Heavy flavour decay and fragmentation with the Analityc Coupling model

Inclusive *B* decays: Threshold resummation

In the Mellin space the threshold resummed form factor reads [Sterman ('87), Catani & Trentadue ('89)]:

$$\ln \sigma_{N} = \int_{0}^{1} dy \frac{(1-y)^{N-1}-1}{y} \left\{ \int_{Q^{2}y^{2}}^{Q^{2}y} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} A[\alpha_{S}(k_{\perp}^{2})] + B[\alpha_{S}(Q^{2}y)] + D[\alpha_{S}(Q^{2}y^{2})] \right\}$$

where
$$A(\alpha_S) = \sum_{n=1}^{\infty} A_n \alpha_S^n$$
, $B(\alpha_S) = \sum_{n=1}^{\infty} B_n \alpha_S^n$, $D(\alpha_S) = \sum_{n=1}^{\infty} D_n \alpha_S^n$.

When $y = \frac{m_X^2}{Q^2} \rightarrow 0$ this formula involves $\alpha_S(k_{\perp}^2)$ evaluated at the Landau pole: it is necessary a prescription (outside pQCD), f.i. the Minimal Prescription [Catani, Mangano, Nason & Trentadue ('96)].

ldea: introduce non-perturbative effects (Fermi motion) in the resummation formula using an effective coupling without the Landau pole [Aglietti, Ricciardi ('04),Aglietti,G.F., Ricciardi ('06)].

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

Inclusive *B* decays: Threshold resummation

In the Mellin space the threshold resummed form factor reads [Sterman ('87), Catani & Trentadue ('89)]:

$$\ln \sigma_{N} = \int_{0}^{1} dy \frac{(1-y)^{N-1}-1}{y} \left\{ \int_{Q^{2}y^{2}}^{Q^{2}y} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} A[\alpha_{S}(k_{\perp}^{2})] + B[\alpha_{S}(Q^{2}y)] + D[\alpha_{S}(Q^{2}y^{2})] \right\}$$

where
$$A(\alpha_S) = \sum_{n=1}^{\infty} A_n \alpha_S^n$$
, $B(\alpha_S) = \sum_{n=1}^{\infty} B_n \alpha_S^n$, $D(\alpha_S) = \sum_{n=1}^{\infty} D_n \alpha_S^n$.

When $y = \frac{m_{\chi}^2}{Q^2} \rightarrow 0$ this formula involves $\alpha_S(k_{\perp}^2)$ evaluated at the Landau pole: it is necessary a prescription (outside pQCD), f.i. the Minimal Prescription [Catani, Mangano, Nason & Trentadue ('96)].

Idea: introduce non-perturbative effects (Fermi motion) in the resummation formula using an effective coupling without the Landau pole [Aglietti, Ricciardi ('04), Aglietti, G.F., Ricciardi ('06)].

Analytic QCD coupling

- Standard QCD coupling: physical cut at $\mu^2 < 0$ and unphysical pole at $\mu^2 = \Lambda^2_{QCD}$: $\alpha_S^{lo}(\mu^2) = \frac{1}{\beta_0 \ln \frac{\mu^2}{\Lambda^2 - \mu}}$.
- Analytic QCD coupling: same discontinuity along the cut but analytic elsewhere in the complex plane [Shirkov & Solovtsov ('97)]:

$$\bar{\alpha}_{S}(Q^{2}) = \frac{1}{2\pi i} \int_{0}^{\infty} \frac{ds}{s+Q^{2}} \operatorname{Disc}_{s} \alpha_{S}(-s), \quad \text{space-like.}$$

• The infrared pole is subtracted without modify high energy behaviour

$$\bar{\alpha}_{S}^{lo}(Q^{2}) = \frac{1}{\beta_{0}} \left[\frac{1}{\ln Q^{2}/\Lambda_{QCD}^{2}} - \frac{\Lambda_{QCD}^{2}}{Q^{2} - \Lambda_{QCD}^{2}} \right] ,$$
$$\lim_{d \to 0} \bar{\alpha}_{S}(Q^{2}) = \frac{1}{\beta_{0}} , \qquad \lim_{Q^{2} \to \infty} \bar{\alpha}_{S}(Q^{2}) = \lim_{Q^{2} \to \infty} \alpha_{S}(Q^{2}) .$$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics - Ferrara - 19/3/2009

Analytic QCD coupling

- Standard QCD coupling: physical cut at $\mu^2 < 0$ and unphysical pole at $\mu^2 = \Lambda^2_{QCD}$: $\alpha_S^{lo}(\mu^2) = \frac{1}{\beta_0 \ln \frac{\mu^2}{\Lambda^2_{CD}}}$.
- Analytic QCD coupling: same discontinuity along the cut but analytic elsewhere in the complex plane [Shirkov & Solovtsov ('97)]:

$$ar{lpha}_{\mathcal{S}}(Q^2) = rac{1}{2\pi i} \int_0^\infty rac{ds}{s+Q^2} \operatorname{Disc}_s lpha_{\mathcal{S}}(-s), \quad ext{space-like}.$$

• The infrared pole is subtracted without modify high energy behaviour

$$\bar{\alpha}_{S}^{lo}(Q^{2}) = \frac{1}{\beta_{0}} \left[\frac{1}{\ln Q^{2}/\Lambda_{QCD}^{2}} - \frac{\Lambda_{QCD}^{2}}{Q^{2} - \Lambda_{QCD}^{2}} \right],$$

$$\underset{\rightarrow 0}{\text{m}} \bar{\alpha}_{S}(Q^{2}) = \frac{1}{\beta_{0}}, \qquad \underset{Q^{2} \rightarrow \infty}{\text{lim}} \bar{\alpha}_{S}(Q^{2}) = \underset{Q^{2} \rightarrow \infty}{\text{lim}} \alpha_{S}(Q^{2})$$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics - Ferrara - 19/3/2009

Analytic QCD coupling

- Standard QCD coupling: physical cut at $\mu^2 < 0$ and unphysical pole at $\mu^2 = \Lambda^2_{QCD}$: $\alpha_S^{lo}(\mu^2) = \frac{1}{\beta_0 \ln \frac{\mu^2}{\Lambda^2 - \mu}}$.
- Analytic QCD coupling: same discontinuity along the cut but analytic elsewhere in the complex plane [Shirkov & Solovtsov ('97)]:

$$\bar{lpha}_{\mathcal{S}}(Q^2) = \frac{1}{2\pi i} \int_0^\infty \frac{ds}{s+Q^2} \operatorname{Disc}_s \alpha_{\mathcal{S}}(-s), \quad ext{space-like}.$$

• The infrared pole is subtracted without modify high energy behaviour

$$\bar{\alpha}_{S}^{lo}(Q^{2}) = \frac{1}{\beta_{0}} \left[\frac{1}{\ln Q^{2}/\Lambda_{QCD}^{2}} - \frac{\Lambda_{QCD}^{2}}{Q^{2} - \Lambda_{QCD}^{2}} \right] ,$$
$$\lim_{Q^{2} \to \infty} \bar{\alpha}_{S}(Q^{2}) = \frac{1}{\beta_{0}} , \qquad \lim_{Q^{2} \to \infty} \bar{\alpha}_{S}(Q^{2}) = \lim_{Q^{2} \to \infty} \alpha_{S}(Q^{2})$$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

• Semi-inclusive *B* decays are time-like processes:

$$ilde{lpha}_{\mathcal{S}}(k_{\perp}^2) = rac{i}{2\pi} \int_0^{k_{\perp}^2} ds \, \text{Disc}_s \, rac{ar{lpha}_{\mathcal{S}}(-s)}{s}, \quad ext{time-like}.$$

• At leading order we have:

$$\tilde{\alpha}_{S}^{lo}(k_{\perp}^{2}) = \frac{1}{\beta_{0}} \left(\frac{1}{2} - \frac{1}{\pi} \arctan \frac{\ln \frac{1}{\Lambda_{QCD}^{2}}}{\pi} \right) ,$$
$$\lim_{k_{\perp}^{2} \to 0} \tilde{\alpha}_{S}(k_{\perp}^{2}) = \frac{1}{\beta_{0}} , \qquad \lim_{k_{\perp}^{2} \to \infty} \tilde{\alpha}_{S}(k_{\perp}^{2}) = \lim_{k_{\perp}^{2} \to \infty} \alpha_{S}(k_{\perp}^{2}) .$$

• The well defined quantity

$$\alpha_0 = \frac{1}{\mu_I} \int_0^{\mu_I} \tilde{\alpha}_S(k_{\perp}^2) dk_{\perp} \simeq 0.44, \quad \text{with} \quad \mu_I = 2 \text{ GeV}$$

is similar to the fitted value from shape variables data in the
DMW model ($\alpha_0 \simeq 0.45$) [Dokshitzer, Marchesini & Webber ('95)].

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

• Semi-inclusive *B* decays are time-like processes:

$$ilde{lpha}_{\mathcal{S}}(k_{\perp}^2) \,=\, rac{i}{2\pi}\,\int_{0}^{k_{\perp}^2}\, ds\, {\it Disc}_s\, rac{ar{lpha}_{\mathcal{S}}(-s)}{s}, \quad {
m time-like}.$$

• At leading order we have:

$$\tilde{\alpha}_{\mathcal{S}}^{\prime o}(k_{\perp}^{2}) = \frac{1}{\beta_{0}} \left(\frac{1}{2} - \frac{1}{\pi} \arctan \frac{\ln \frac{k_{\perp}^{2}}{\Lambda_{QCD}^{2}}}{\pi} \right) ,$$
$$\lim_{k_{\perp}^{2} \to 0} \tilde{\alpha}_{\mathcal{S}}(k_{\perp}^{2}) = \frac{1}{\beta_{0}} , \qquad \lim_{k_{\perp}^{2} \to \infty} \tilde{\alpha}_{\mathcal{S}}(k_{\perp}^{2}) = \lim_{k_{\perp}^{2} \to \infty} \alpha_{\mathcal{S}}(k_{\perp}^{2}) .$$

• The well defined quantity

$$\alpha_0 = \frac{1}{\mu_I} \int_0^{\mu_I} \tilde{\alpha}_S(k_{\perp}^2) \, dk_{\perp} \simeq 0.44, \quad \text{with} \quad \mu_I = 2 \, GeV$$

s similar to the fitted value from shape variables data in the DMW model ($\alpha_0 \simeq 0.45$) [Dokshitzer, Marchesini & Webber ('95)].

VI Meeting on B physics – Ferrara – 19/3/2009

• Semi-inclusive *B* decays are time-like processes:

$$ilde{lpha}_{\mathcal{S}}(k_{\perp}^2) \,=\, rac{i}{2\pi}\,\int_{0}^{k_{\perp}^2}\, ds\, extsf{Disc}_{s}\, rac{ar{lpha}_{\mathcal{S}}(-s)}{s}, \quad extsf{time-like}.$$

• At leading order we have:

$$\tilde{\alpha}_{S}^{lo}(k_{\perp}^{2}) = \frac{1}{\beta_{0}} \left(\frac{1}{2} - \frac{1}{\pi} \arctan \frac{\ln \frac{k_{\perp}^{2}}{\Lambda_{QCD}^{2}}}{\pi} \right) ,$$
$$\lim_{k_{\perp}^{2} \to 0} \tilde{\alpha}_{S}(k_{\perp}^{2}) = \frac{1}{\beta_{0}} , \qquad \lim_{k_{\perp}^{2} \to \infty} \tilde{\alpha}_{S}(k_{\perp}^{2}) = \lim_{k_{\perp}^{2} \to \infty} \alpha_{S}(k_{\perp}^{2}) .$$

• The well defined quantity

$$lpha_0 = rac{1}{\mu_I} \int_0^{\mu_I} ilde{lpha}_{\mathcal{S}}(k_\perp^2) \, dk_\perp \simeq 0.44, \quad ext{with} \quad \mu_I = 2 \ GeV$$

is similar to the fitted value from shape variables data in the DMW model ($\alpha_0 \simeq 0.45$) [Dokshitzer, Marchesini & Webber ('95)].

$$\ln \sigma_{N} = \int_{0}^{1} dy \frac{(1-y)^{N-1} - 1}{y} \left\{ \int_{Q^{2}y^{2}}^{Q^{2}y} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \tilde{A} \left[\tilde{\alpha}_{s}(k_{\perp}^{2}) \right] + \tilde{B} \left[\tilde{\alpha}_{s}(Q^{2}y) \right] + \tilde{D} \left[\tilde{\alpha}_{s}(Q^{2}y^{2}) \right] \right\}$$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

standard one.

We have an improved threshold resummation formula.

$$\ln \sigma_{N} = \int_{0}^{1} dy \frac{(1-y)^{N-1}-1}{y} \left\{ \int_{Q^{2}y^{2}}^{Q^{2}y} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \tilde{A} \left[\tilde{\alpha}_{S}(k_{\perp}^{2}) \right] + \tilde{B} \left[\tilde{\alpha}_{S}(Q^{2}y) \right] + \tilde{D} \left[\tilde{\alpha}_{S}(Q^{2}y^{2}) \right] \right\}$$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

 $e^+e^- \rightarrow Z^0 \rightarrow B + X$

- Energy scales: $m_Z \ge E_b \ge m_b$, $Q = m_Z \sim 90 \ GeV$
- Threshold region: $x_b \equiv \frac{2E_b}{m_Z} \to 1$
- The *b* quark energy distribution factorizes as [Mele,Nason ('91), Cacciari,Catani ('01)]: $\frac{1}{\sigma} \frac{d\sigma}{dx_b} (x_b; m_Z, m_b) = C(x_b; m_Z, \mu_F) \otimes E(x_b; \mu_F, \mu_{0F}) \otimes D^{ini}(x_b; \mu_{0F}, m_b)$
- The soft effects contained in Dⁱⁿⁱ have the same resummed expression as in b decays [Gardi ('05)].

$$\ln D_N^{ini} \sim \int_0^1 dy \, \frac{(1-y)^{N-1} - 1}{y} \left\{ \int_{Q^2 y^2}^{\mu_{0F}^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \, A[\alpha_S(k_{\perp}^2)] + D[\alpha_S(Q^2 y^2)] \right\}$$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

- Energy scales: $m_Z \ge E_b \ge m_b$, $Q = m_Z \sim 90 \ GeV$
- Threshold region: $x_b \equiv \frac{2E_b}{m_z} \rightarrow 1$

• The soft effects contained in Dⁱⁿⁱ have the same resummed expression as

$$\ln D_N^{ini} \sim \int_0^1 dy \, \frac{(1-y)^{N-1} - 1}{y} \left\{ \int_{Q^2 y^2}^{\mu_{0F}^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \, A[\alpha_S(k_{\perp}^2)] + D[\alpha_S(Q^2 y^2)] \right\}$$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

- Energy scales: $m_Z \ge E_b \ge m_b$, $Q = m_Z \sim 90 \ GeV$
- Threshold region: $x_b \equiv \frac{2E_b}{m_Z} \rightarrow 1$

• The *b* quark energy distribution factorizes as [Mele,Nason ('91), Cacciari,Catani ('01)]: $\frac{1}{\sigma} \frac{d\sigma}{dx_b} (x_b; m_Z, m_b) = C(x_b; m_Z, \mu_F) \otimes E(x_b; \mu_F, \mu_{0F}) \otimes D^{ini}(x_b; \mu_{0F}, m_b)$

• The soft effects contained in Dⁱⁿⁱ have the same resummed expression as in b decays [Gardi ('05)].

$$\ln D_N^{ini} \sim \int_0^1 dy \, \frac{(1-y)^{N-1} - 1}{y} \left\{ \int_{Q^2 y^2}^{\mu_{0F}^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \, A[\alpha_S(k_{\perp}^2)] + D[\alpha_S(Q^2 y^2)] \right\}$$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

- Energy scales: $m_Z \ge E_b \ge m_b$, $Q = m_Z \sim 90 \ GeV$
- Threshold region: $x_b \equiv \frac{2E_b}{m_Z} \rightarrow 1$
- The *b* quark energy distribution factorizes as [Mele,Nason ('91), Cacciari,Catani ('01)]: $\frac{1}{\sigma} \frac{d\sigma}{dx_b}(x_b; m_Z, m_b) = C(x_b; m_Z, \mu_F) \otimes E(x_b; \mu_F, \mu_{0F}) \otimes D^{ini}(x_b; \mu_{0F}, m_b)$
- The soft effects contained in Dⁱⁿⁱ have the same resummed expression as in b decays [Gardi ('05)].

$$\ln D_N^{ini} \sim \int_0^1 dy \, \frac{(1-y)^{N-1} - 1}{y} \left\{ \int_{Q^2 y^2}^{\mu_{0F}^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \, A[\alpha_S(k_{\perp}^2)] + D[\alpha_S(Q^2 y^2)] \right\}$$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

- Energy scales: $m_Z \ge E_b \ge m_b$, $Q = m_Z \sim 90 \ GeV$
- Threshold region: $x_b \equiv \frac{2E_b}{m_Z} \rightarrow 1$

• The *b* quark energy distribution factorizes as [Mele,Nason ('91), Cacciari,Catani ('01)]: $\frac{1}{\sigma} \frac{d\sigma}{dx_b} (x_b; m_Z, m_b) = C(x_b; m_Z, \mu_F) \otimes E(x_b; \mu_F, \mu_{0F}) \otimes D^{ini}(x_b; \mu_{0F}, m_b)$

• The soft effects contained in D^{ini} have the same resummed expression as in *b* decays [Gardi ('05)].

$$\ln D_N^{ini} \sim \int_0^1 dy \; \frac{(1-y)^{N-1} - 1}{y} \left\{ \int_{Q^2 y^2}^{\mu_{0F}^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \; A[\alpha_S(k_{\perp}^2)] + D[\alpha_S(Q^2 y^2)] \right\} \qquad (1)$$

Giancarlo Ferrera – Università di Firenze

b-quark fragmentation: $e^+e^- \rightarrow Z^0 \rightarrow B + X$, $x_b = \frac{2E_b}{m_z}$

Figure 2: *B*-hadron spectrum: fixed-order prediction compared with experimental data [Aleph ('01), Delphi ('02), SLD ('00)].

b-quark fragmentation: $e^+e^- \rightarrow Z^0 \rightarrow B + X$, $x_b = \frac{2E_b}{m_z}$

Figure 2: *B*-hadron spectrum: prediction of the NLL resummation with the MP compared with experimental data [Aleph ('01), Delphi ('02), SLD ('00)].

0.6

X,

0.8

1.0

Figure 2: B-hadron spectrum: prediction of the NNLL analytic coupling model [Aglietti, Corcella, G.F. ('06)] compared with experimental data [Aleph ('01), Delphi ('02), SLD ('00)].

0.4

Heavy flavour decay and fragmentation with the Analityc Coupling model

0.2

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

Figure 3: Model dependence on the factorizations scales (left): $\mu_{0F} = m_b/2$, m_b , $2m_b$; $\mu_F = m_Z/2$, m_Z , $2m_Z$ and on $\alpha_S(m_Z)$ and on m_b (right): $\alpha_S(m_Z) = 0.117$, 0.119, 0.121; $m_b = 4.7$, 5.0, 5.3 GeV.

+

Giancarlo Ferrera – Università di Firenze

Heavy flavour decay and fragmentation with the Analityc Coupling model

Radiative decay: hadron mass and photon energy distribition

Figure 4: Invariant hadron mass distribution in the radiative decay: prediction of the model compared with the experimental data [BaBar ('05)]. The K^* peak cannot clearly be accounted for in a perturbative *QCD* framework. Photon energy spectrum in the radiative decay: prediction of the model compared with data [Cleo ('01), BaBar ('05), Belle ('05)]

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

Semileptonic decay: hadron mass distribution

Figure 5: Invariant hadron mass distribution in the semileptonic decay: prediction of the model compared with the experimental [Belle ('04), BaBar ('05)]. Note the π and the ρ peaks at small hadron masses.

Giancarlo Ferrera – Università di Firenze

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

Semileptonic decay: electron energy distribution

Figure 6: Inclusive charmless electron spectrum in the semileptonic decay: prediction of the model compared with data [Cleo ('01) and Belle ('04)]. To include the Doppler effect, we have convoluted our spectrum with a Gaussian distribution with $\sigma \sim 100$ MeV. Our model predicts a maximum around the energy $E_e = 2$ GeV, below which data are not available.

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

Semileptonic decay: electron energy distribution

Figure 7: Inclusive charmless electron spectrum in the semileptonic decay: prediction of the model compared with data [Babar ('05)]. To include the Doppler effect, we have convoluted our spectrum with a Gaussian distribution with $\sigma \sim 100$ MeV. We do not known whether the discrepancy is related to a deficiency of our model or to an under-estimate charm background.

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

Semileptonic decay: electron energy distribution

Figure 7: Inclusive charmless electron spectrum in the semileptonic decay: prediction of the model compared with data [Babar ('05)]. To include the Doppler effect, we have convoluted our spectrum with a Gaussian distribution with $\sigma \sim 100$ MeV. We do not known whether the discrepancy is related to a deficiency of our model or to an under-estimate charm background.

Giancarlo Ferrera – Università di Firenze

Hadron energy distribution in the semileptonic decay

It is the only single differential distribution in the semileptonic decay which (for $E_X > m_b/2$) permits the direct extraction of the QCD form factor.

$$\frac{1}{\Gamma_{s}} \frac{d\Gamma_{s}}{dw} = C_{w_{1}}(\alpha_{s}) \left\{ 1 - C_{w_{2}}(\alpha_{s}) \Sigma[w-1; \alpha_{s}(m_{b})] + H(w; \alpha_{s}) \right\} \quad (w>1)$$
where $\Sigma[u; \alpha_{s}] = \int_{0}^{u} du' \sigma(u'; \alpha_{s}).$

$$\int_{1}^{2} \frac{1}{\Gamma_{sl}} \frac{d\Gamma_{sl}}{dw} dw = 0.2$$

$$\int_{0}^{2} \frac{d\Gamma_{sl}}{dw} dw = 0.2$$

$$\int_{0}^{2} \frac{d\Gamma_{sl}}{dw} dw = 0.2$$

Figure 8: Hadron energy distribution in the semileptonic decay generated by a Monte Carlo based on the model: see the "Sudakov shoulder" [Catani & Webber ('07)].

Extraction of $\alpha_S(m_Z)$

$b \to u \ I \ \nu$

 $\begin{array}{rcl} \alpha_{S}(m_{Z}) &=& 0.119 \pm 0.003 & (m_{Xu} : BABAR) \\ \alpha_{S}(m_{Z}) &=& 0.119 \pm 0.004 & (m_{Xu} : BELLE) \\ \alpha_{S}(m_{Z}) &=& 0.117 \pm 0.005 & (E_{e} : CLEO) \\ \alpha_{S}(m_{Z}) &=& 0.119 \pm 0.005 & (E_{e} : BABAR) \end{array}$

 $\alpha_S(m_Z) = 0.1176 \pm 0.0020$ (PDG08)

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

프 > > = > >

Heavy flavour decay and fragmentation with the Analityc Coupling model

Extraction of $|V_{ub}|$: [Aglietti, Di Ludovico, G.F., Ricciardi ('08)]

Figure 9: $|V_{ub}|$ values for the uncorrelated analyses and their average

$$|V_{ub}| = 3.76 \pm 0.13_{exp} \pm 0.22_{th}$$
 .

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

()

< A

$$\sigma_{N}(Q^{2}, m^{2}) = \sigma_{N}(Q^{2}) \, \delta_{N}(Q^{2}, m^{2}), \qquad r \equiv \frac{m^{2}}{Q^{2}} \simeq 0.1$$
$$\delta_{N} = \int_{0}^{1} \frac{dy}{y} \frac{(1-y)^{r(N-1)} - 1}{y} \left\{ -\int_{m^{2}y^{2}}^{m^{2}y} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} A[\alpha_{S}(k_{\perp}^{2})] - B[\alpha_{S}(m^{2}y)] + D[\alpha_{S}(m^{2}y^{2})] \right\}$$

- This formula have been checked against explicit α_S order computations: the radiative decay $b \rightarrow s\gamma$ with $m_s \neq 0$ and DIS $\nu_{\mu} + s \rightarrow c + \mu$ with $m_c \neq 0$, finding complete agreement.
- Using this formula, the full $O(\alpha_S)$ triple differential distribution [Trott ('04), Aquila, Gambino, Ridolfi & Uraltsev ('05)] and the model previously described we are confident that we can provide quantitative description of the data.

$$\sigma_N(Q^2, m^2) = \sigma_N(Q^2) \ \delta_N(Q^2, m^2), \qquad r \equiv \frac{m^2}{Q^2} \simeq 0.1$$
$$\ln \delta_N = \int_0^1 dy \frac{(1-y)^{r(N-1)} - 1}{y} \left\{ -\int_{m^2 y^2}^{m^2 y} \frac{dk_{\perp}^2}{k_{\perp}^2} A[\alpha_S(k_{\perp}^2)] - B[\alpha_S(m^2 y)] + D[\alpha_S(m^2 y^2)] \right\}$$

- This formula have been checked against explicit α_S order computations: the radiative decay $b \rightarrow s\gamma$ with $m_s \neq 0$ and DIS $\nu_{\mu} + s \rightarrow c + \mu$ with $m_c \neq 0$, finding complete agreement.
- Using this formula, the full O(α_S) triple differential distribution [Trott ('04), Aquila, Gambino, Ridolfi & Uraltsev ('05)] and the model previously described we are confident that we can provide quantitative description of the data.

$$\sigma_N(Q^2, m^2) = \sigma_N(Q^2) \ \delta_N(Q^2, m^2), \qquad r \equiv \frac{m^2}{Q^2} \simeq 0.1$$
$$\ln \delta_N = \int_0^1 dy \frac{(1-y)^{r(N-1)} - 1}{y} \left\{ -\int_{m^2 y^2}^{m^2 y} \frac{dk_\perp^2}{k_\perp^2} A[\alpha_S(k_\perp^2)] - B[\alpha_S(m^2 y)] + D[\alpha_S(m^2 y^2)] \right\}$$

- This formula have been checked against explicit α_s order computations: the radiative decay $b \rightarrow s\gamma$ with $m_s \neq 0$ and DIS $\nu_{\mu} + s \rightarrow c + \mu$ with $m_c \neq 0$, finding complete agreement.
- Using this formula, the full $O(\alpha_S)$ triple differential distribution [Trott ('04), Aquila, Gambino, Ridolfi & Uraltsev ('05)] and the model previously described we are confident that we can provide quantitative description of the data.

$$\sigma_N(Q^2, m^2) = \sigma_N(Q^2) \ \delta_N(Q^2, m^2), \qquad r \equiv \frac{m^2}{Q^2} \simeq 0.1$$
$$\ln \delta_N = \int_0^1 dy \frac{(1-y)^{r(N-1)} - 1}{y} \left\{ -\int_{m^2 y^2}^{m^2 y} \frac{dk_\perp^2}{k_\perp^2} A[\alpha_S(k_\perp^2)] - B[\alpha_S(m^2 y)] + D[\alpha_S(m^2 y^2)] \right\}$$

- This formula have been checked against explicit α_s order computations: the radiative decay $b \rightarrow s\gamma$ with $m_s \neq 0$ and DIS $\nu_{\mu} + s \rightarrow c + \mu$ with $m_c \neq 0$, finding complete agreement.
- Using this formula, the full $O(\alpha_S)$ triple differential distribution [Trott ('04), Aquila, Gambino, Ridolfi & Uraltsev ('05)] and the model previously described we are confident that we can provide quantitative description of the data.

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

- Heavy flavour physics in the threshold region is plagued by large logarithmic perturbative corrections and non perturbative effects : all order resummation and a model for non perturbative physics is needed.
- Through the analytic QCD coupling and NNLL threshold resummation we have developed a model that describes with good accuracy the measured spectra.
- The extracted values for $\alpha_S(m_Z)$ are in agreement with the PDG avarage and the extraction of $|V_{ub}|$ is in complete agreement with the SM fit.
- We propose a thresold resummation formula for processes involving jets initiated by massive quarks. It can be used to apply the model in the semileptonic charmed decays.

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

- Heavy flavour physics in the threshold region is plagued by large logarithmic perturbative corrections and non perturbative effects : all order resummation and a model for non perturbative physics is needed.
- Through the analytic QCD coupling and NNLL threshold resummation we have developed a model that describes with good accuracy the measured spectra.
- The extracted values for $\alpha_S(m_Z)$ are in agreement with the PDG avarage and the extraction of $|V_{ub}|$ is in complete agreement with the SM fit.
- We propose a thresold resummation formula for processes involving jets initiated by massive quarks. It can be used to apply the model in the semileptonic charmed decays.

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

- Heavy flavour physics in the threshold region is plagued by large logarithmic perturbative corrections and non perturbative effects : all order resummation and a model for non perturbative physics is needed.
- Through the analytic QCD coupling and NNLL threshold resummation we have developed a model that describes with good accuracy the measured spectra.
- The extracted values for $\alpha_S(m_Z)$ are in agreement with the PDG avarage and the extraction of $|V_{ub}|$ is in complete agreement with the SM fit.
- We propose a thresold resummation formula for processes involving jets initiated by massive quarks. It can be used to apply the model in the semileptonic charmed decays.

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

- Heavy flavour physics in the threshold region is plagued by large logarithmic perturbative corrections and non perturbative effects : all order resummation and a model for non perturbative physics is needed.
- Through the analytic QCD coupling and NNLL threshold resummation we have developed a model that describes with good accuracy the measured spectra.
- The extracted values for $\alpha_S(m_Z)$ are in agreement with the PDG avarage and the extraction of $|V_{ub}|$ is in complete agreement with the SM fit.
- We propose a thresold resummation formula for processes involving jets initiated by massive quarks. It can be used to apply the model in the semileptonic charmed decays.

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

Backup Slides

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics - Ferrara - 19/3/2009

문어 문

Heavy flavour decay and fragmentation with the Analityc Coupling model

19/18

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

Logarithmic corrections

• The probability for a light quark to evolve into a jet with an invariant mass smaller than m_X is written in leading order as:

$$J(m_X) = 1 + \alpha_S \frac{C_F}{\pi} \int_0^1 \frac{d\omega}{\omega} \int_0^1 \frac{d\theta^2}{\theta^2} \left[\Theta\left(\frac{m_X^2}{Q^2} - \omega \theta^2\right) - 1 \right]$$

= $1 - \alpha_S \frac{C_F}{2\pi} \log^2\left(\frac{Q^2}{m_X^2}\right).$

- Both integrals diverge for $\omega = 0$ (soft singularity) and for $\theta = 0$ (collinear singularity), but their sum is finite.
- "Complete" real-virtual cancellation occurs only for $m_X = Q$, i.e. in the completely inclusive evolution of the quark line, while for $m_X < Q$ there is a left-over double logarithm.

•
$$\alpha_S(m_B) \simeq 0.2$$
, $\log^2\left(\frac{Q^2}{m_X^2}\right) \sim 6$ if $m_X \sim \sqrt{m_B \Lambda_{QCD}}$

Fermi motion

$$B \rightarrow X + \langle \text{non QCD partons} \rangle$$
 $p_B = p_X + q$ $(p_b = p_{\hat{X}} + q)$
 $p_b = p_B + k'$ with $k' \sim O(\Lambda_{QCD})$
 $m_{\hat{X}}^2 = (p_b - q)^2 = (p_X + k')^2 = m_X^2 + 2p_X \cdot k' + {k'}^2 \simeq m_X^2 + 2E_X k'_+$

• Fermi motion can be described by shape function $f(k'_+)$ which represents the distribution of the effective mass $m_B + k'_+$ of the heavy quark [Bigi et al.('93)].

• Non-perturbative (f.i. lattice QCD) calculation of $f(k'_+)$ does not exist: models with free parameter to be extracted from the $B \rightarrow X_s \gamma$ data have been proposed [Neubert et al.('05); Gambino et al.('07)].

 Experimental data do not permit an accurate extraction of the shape function.

We propose a general model to describes semi-inclusive *B* decays, based on NNLL threshold resummation and on an effective QCD coupling which we have tested with precise LEP and SLD data.

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

Heavy flavour decay and fragmentation with the Analityc Coupling model

Radiative decay
$$B \rightarrow X_s \gamma$$

• Invariant mass distribution:

$$\frac{1}{\Gamma_r}\frac{d\Gamma_r}{dt} = C_r[\alpha_S(Q)]\sigma[t;\alpha_S(Q)] + d_r[t;\alpha_S(Q)],$$

where $t \equiv m_X^2/m_b^2$ and $Q = 2 E_X$. $Q = m_b(1 + m_X^2/m_b^2) \simeq m_b$, $\alpha_S(Q) \simeq \alpha_S(m_b) \simeq 0.22$.

•
$$C_r(\alpha_s) = C_r^{(0)} + \alpha_s C_r^{(1)} + \cdots$$

short-distance (process dependent) hard factor.

• $\Sigma(t; \alpha_S) = \int_0^t \sigma(t'; \alpha_S) dt' = \sum_{n=0}^{\infty} \sum_{k=0}^{2n} \Sigma_{n,k} \alpha_S^n \ln^k(1/t)$ long-distance dominated (universal) QCD form factor.

•
$$d_r(t; \alpha_S) = d_r^{(0)}(t) + \alpha_S d_r^{(1)}(t) + \cdots$$

short-distance (process dependent) remainder function, to have good approximation also in the region $m_X \leq E_X$: $\lim_{t\to 0} \int_0^t d_r(t'; \alpha_S) dt' = 0$.

23/18

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

Semileptonic charmless decay $B \rightarrow X_u + l + \nu$

• Triple differential distribution reads [Aglietti ('01)]:

$$\frac{1}{\Gamma_s}\frac{d^3\Gamma_s}{dxdudw} = C_s[x, w; \alpha_S(Q)] \sigma[u; \alpha_S(Q)] + d_s[x, u, w; \alpha_S(Q)]$$

where
$$x \equiv \frac{2E_l}{m_b}$$
, $w \equiv \frac{2E_X}{m_b}$, $u \equiv \frac{1-\sqrt{1-4y}}{1+\sqrt{1-4y}}$, $y \equiv \frac{m_X^2}{Q^2} = \frac{m_X^2}{4E_X^2}$.
 $Q = m_b(1 + m_X^2/m_b^2 - q^2/m_b^2)$; q^2 is the dilepton invariant mass.

We can not put $\alpha_{S}(Q) \simeq \alpha_{S}(m_{b})$ in the form factor σ : $\alpha_{S}(Q) = \alpha_{S}(wm_{b})$.

- $C_s(x, w; \alpha_S) = C_s^{(0)}(x, w) + \alpha_S C_s^{(1)}(x, w) + \cdots$ short-distance (process dependent) hard factor.
- $d_s(x, u, w; \alpha_s) = d_s^{(0)}(x, u, w) + \alpha_s d_s^{(1)}(x, u, w) + \cdots$

short-distance (process dependent) remainder function.

Giancarlo Ferrera – Università di Firenze

24/18

Non universality effects

- Universality of long-distance effects studied by comparing the logarithmic structure of different spectra.
- Spectra not involving integration over hadron energy: same infrared structure of the hadron invariant mass distribution of the radiative decay i.e pure short-distance relation

$$\Sigma(u;\alpha_S) = \int_0^u \sigma(u';\alpha_S) du' = 1 + \sum_{n=1}^\infty \sum_{k=1}^{2n} \Sigma_{n,k} \alpha_S^n \ln^k \frac{1}{u}$$

• Spectra involving integration over hadron energy: different infrared structure from each other and from the hadron invariant mass distribution of the radiative decay i.e not pure short-distance relation [Aglietti, Ricciardi & G.F. ('05)].

$$\Sigma_{U}(u;\alpha_{S}) = \frac{\int_{0}^{1} \int_{0}^{w} C(x,w;\alpha_{S}) dx \Sigma(u;\alpha_{S}(wm_{b})) dw}{\int_{0}^{1} \int_{0}^{w} C(x,w;\alpha_{S}) dx dw} = 1 + \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \Sigma_{U_{n,k}} \alpha_{S}^{n} \ln^{k} \frac{1}{u}$$

Giancarlo Ferrera – Università di Firenze

Threshold resummation with analytic coupling

• The threshold resummation formula with the analytic coupling reads

$$\ln \sigma_{N} = \int_{0}^{1} dy \, \frac{(1-y)^{N-1} - 1}{y} \left\{ \int_{Q^{2}y^{2}}^{Q^{2}y} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \, \tilde{A}[\tilde{\alpha}_{S}(k_{\perp}^{2})] + \tilde{B}[\tilde{\alpha}_{S}(Q^{2}y)] + \tilde{D}[\tilde{\alpha}_{S}(Q^{2}y^{2})] \right\}$$

• The coefficients for the time-like coupling are obtained by imposing the equality:

$$A(\alpha_{S}) = \tilde{A}(\tilde{\alpha}_{S}), \quad B(\alpha_{S}) = \tilde{B}(\tilde{\alpha}_{S}), \quad D(\alpha_{S}) = \tilde{D}(\tilde{\alpha}_{S}),$$

• Expressing the time-like coupling in terms of the standard one, we obtain:

$$\tilde{A}_1 = A_1;$$
 $\tilde{A}_2 = A_2;$ $\tilde{A}_3 = A_3 + \frac{(\pi\beta_0)^2}{3}A_1 \simeq 0.31 + 0.72 \simeq 1;$
analogous relations hold for \tilde{B}_i and \tilde{D}_i .

• As part of our model the Mellin integration and the inversion to *x*-space are performed exactly in numerical way

VI Meeting on B physics - Ferrara - 19/3/2009

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions
h auar	1. from montation			

- Energy scales: $m_Z \ge E_b \ge m_b$, $Q = m_Z \sim 90 \ GeV$
- Threshold region: $x_b \equiv \frac{2 E_b}{m_Z} \rightarrow 1$
- At α_s order $x_b + x_{\bar{b}} + \omega = 2$, we obtain $1 x_b = \frac{1}{2} x_{\bar{b}} \omega (1 \cos \theta_{g\bar{b}})$
- We have resummed NNLL large logarithmic contributions that affect the spectrum in the threshold region $(x_b \rightarrow 1)$. [Aglietti,Corcella & G.F.('06)].

Giancarlo Ferrera – Università di Firenze

э

27/18

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

• The energy distribution of the *b* quark factorizes as

 $\frac{1}{\sigma}\frac{d\sigma}{dx_b}(x_b;m_Z,m_b) = C(x_b;m_Z,\mu_F) \otimes E(x_b;\mu_F,\mu_{0F}) \otimes D^{ini}(x_b;\mu_{0F},m_b)$

- C(x_b; m_Z, μ_F) is a coefficient function, describing the emission off a light parton.
- E(x_b; μ_F, μ_{0F}) is an evolution operator from the scale μ_F ~ m_Z down to μ_{0F} ~ m_b. It resums mass logarithms ln^k m²/_{m²};
- Dⁱⁿⁱ(x_b; μ_{0F}, m_b) is the initial condition of the perturbative fragmentation function at the scale μ_{0F} ≃ m_b.
- The soft effects are contained in *Dⁱⁿⁱ* has the same resummed expression as the (perturbative) shape function in b decays

$$\ln D_N^{ini} \sim \int_0^1 dy \, \frac{(1-y)^{N-1} - 1}{y} \left\{ \int_{Q^2 y^2}^{\mu_{0F}^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \, A[\alpha_{\mathcal{S}}(k_{\perp}^2)] + D[\alpha_{\mathcal{S}}(Q^2 y^2)] \right\}$$

28/18

b-quark fragmentation: $e^+e^- \rightarrow Z^0 \rightarrow B + X$, $x_b = \frac{2E_b}{m_Z}$

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics - Ferrara - 19/3/2009

b-quark fragmentation: $e^+e^- \rightarrow Z^0 \rightarrow B + X$, $x_b = \frac{2E_b}{m_z}$

Figure 2: *B*-hadron spectrum: prediction of the NLL resummation with the MP compared with experimental data [Aleph ('01), Delphi ('02), SLD ('00)].

VI Meeting on B physics – Ferrara – 19/3/2009

b-quark fragmentation: $e^+e^- \rightarrow Z^0 \rightarrow B + X$, $x_b = \frac{2E_b}{m_Z}$

Figure 2: *B*-hadron spectrum: prediction of the NLL analytic coupling model compared with experimental data [Aleph ('01), Delphi ('02), SLD ('00)].

b-quark fragmentation: $e^+e^- \rightarrow Z^0 \rightarrow B + X$, $x_b = \frac{2E_b}{m_z}$

Figure 2: *B*-hadron spectrum: prediction of the NNLL analytic coupling model compared with experimental data [Aleph ('01), Delphi ('02), SLD ('00)].

A possible new measure

Hadronic energy distribution in the semileptonic decay

• The QCD form factor can be experimentally measured from the m_X or the E_γ distribution of the radiative decay:

$$\frac{1}{\Gamma_r}\frac{d\Gamma_r}{dt} = C_r(\alpha_S)\sigma[t;\alpha_S(m_b)] + d_r(t;\alpha_S) ,$$

• The only single differential distribution in the semileptonic decay which permits the direct extraction of the QCD form factor is the hadronic energy distribution for $w \equiv 2E_X/m_b > 1$:

$$\frac{1}{\Gamma_s}\frac{d\Gamma_s}{dw} = C_{w_1}(\alpha_s) \left\{ 1 - C_{w_2}(\alpha_s) \Sigma[w-1; \alpha_s(m_b)] + H(w; \alpha_s) \right\} \quad (w>1)$$

where $\Sigma[u; \alpha_S] = \int_0^u du' \sigma(u'; \alpha_S).$

$$\frac{1}{\Gamma_s}\frac{d\Gamma_s}{dw} = L^{(0)}(w) + \alpha_s L^{(1)}(w) + O(\alpha_s^2) \quad (w < 1)$$

(+8-)

Giancarlo Ferrera – Università di Firenze

VI Meeting on B physics – Ferrara – 19/3/2009

Decays	Analytic QCD coupling	Fragmentation	Phenomenology	Conclusions

Semileptonic decay: hadronic energy distribution

$$\int_{1}^{2} \frac{1}{\Gamma_{\rm sl}} \frac{{\rm d}\Gamma_{\rm sl}}{{\rm d}w} {\rm d}w = 0.2$$

Figure 8: Hadronic energy distribution in the semileptonic decay generated by a Monte Carlo based on the model: see the "Sudakov shoulder".

