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mixingss BB −

|M12|, |Γ12|, φ=arg(-M12/Γ12) are related to observables

∆m and ∆Γ come from real and Im parts of box diagrams: 

∆m=2|M12|            |M12| takes contribution from heavy internal particles: t, NP

∆Γ=2|Γ12|cos φ            |Γ12|  sensible to light internal particles u,c 

Any NP would also affect tree level decays              assume no NP in Γ12

NP would change instead |M12| 
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φcos2 12Γ=∆Γ Since NP should not affect Γ12
it can only modify cos φ

NP can only decrease the value of ∆Γ with respect to SM



Theory predictions: ∆m

Calculation of the box diagram with internal top quarks gives rise 
to an effective hamiltonian composed by a single operator

with:

The Wilson coefficient of Q is 
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Theory predictions: ∆m Plots from Lubicz and Tarantino, 0807.4605

sBf
sBB

HPQCD 09HPQCD 09

Very recent HPQCD results, with nf=2+1
 06.086.0 ±=

sBBMeV    15231±=
sBf

Sum rules give results in the same ballpark

ξ 033.0258.1 ±=ξ HPQCD 09 - 0902.1815

Final result: Lenz & Nierste, 
JHEP 06 (07) 072

-1ps   )68.630.19( ±=∆ SMm



Theory predictions: ∆Γ

Exploiting that heavy particles can be integrated out
The effective hamiltonian stems from:

bWt mMm >>,

The imaginary part is obtained
using the optical theorem

Γ12 is written as an expansion
in  Λ/mb and αs
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However:

• almost complete cancellation of the coefficient of Q
• too large 1/mb and αs corrections

Enters also in ∆m

A different basis can be used, with a better behaved expansion



Lenz & Nierste, JHEP 06 (07) 072Theory predictions: ∆Γ
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Time evolution
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Time dependent decay ratesTime dependent decay rates



Determination of ∆m, ∆Γ, φ:
Strategies, experimental methods, theoretical uncertainties



∆ms: experimental determination CDF, PRL97 (06) 242003

Measured quantity: mixing amplitude
Dilution factor D=2Ptag-1
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• tagging of  flavour at production
• final state flavour determined reconstructing flavour specific final states

CDF-1ps     )(07.0)(10.07.17 syststatms ±±=∆

D0 -1ps     )(98.053.18 syststatms +±=∆



Asymmetries

• Asymmetries in flavour specific final states (fs)
• Asymmetries in final CP eigenstates
• CP asymmetries in flavour specific final states

Flavour specific final state f:
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Asymmetries in CP eigenstate final state
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CP Asymmetries in fs final state

Assuming no direct CP violation: 
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CP Asymmetries in fs final state: D0 analysis D0 Collab.,PRL98 (07) 151801
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Another possibility is to use the relation to the analogous asymmetry in Bd decays
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ψφ/JBs →

The final state is an admixture of different CP eigenstates 
can be disentangled considering the angular distribution of the decay products:

−+−+ →→ KKJ φψ       / ll

Three independent polarization amplitudes:
with
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J/ψ rest frame φ rest frame

θ, φ, ψ, transversity angles



ψφ/JBs →

Simple example: time-dependent one-angle distribution:

( ) ( ) θθ
θ

2222
||

2
0 sin

4
3)(cos1

8
3)()(

cos
)( tAtAtA

d
td

⊥+++∝
Γ

CP even CP odd

The full three angle distribution contains more information.
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- it is more involved
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Method exploited by D0 and CDF



D0 Collab., PRL 98 (07) 121801ψφ/JBs →

D0 analysis of the angular distribution in flavour untagged Bs
0 mesons

Fitting:                     

The result has a four-fold ambiguity  ± φ , ±(π-φ) due to the inavriance under 
simultaneous exchange of the sign of sin φ, cos δ1, cos δ2

ψφθ ddd
d
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3Γ

Two sets of solutions:

)( 02.0)( 08.017.0                 )( 02.0)( 08.017.0
 )()( 56.035.2                       )()( 56.079.0

ss

01.0
14.0

01.0
14.0

syststatsyststat
syststatsyststat

±±−=∆Γ±±=∆Γ

±±=±±= φφ
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ψφ/JBs → CDF Collab., PRL 100 (08) 161802

CDF and D0 analysis of flavour tagged decay

combines information obtained from both the time dependence 
both the angular distributions to disentangle the various CP components

allows to reduce the four-fold ambiguity in a twofold ambiguity 

D0 Collab., PRL 101 (08) 241801

CDF Results:                                            at 68% C.L.

while imposing the SM prediction for Γ12: 

[ ]82.2 ,32.02 ∈sβ

[ ] [ ].902 ,78.1.361 ,24.02 ∪∈sβ

Assuming SM predictions for 2βs and ∆Γ, CDF finds that the probability of a 
deviation as large as the level of the observed data is 15%



ψφ/JBs → D0 Collab., PRL 101 (08) 241801

Allowed ranges at 90% C.L.

the SM hypothesis for φ has a probability of  8.5 % 

11 ps   05.033.0-          ps   33.005.0
92.106.3                 08.022.1

−− −<∆Γ<<∆Γ<

−<<−−<<− φφ

D0 performs also a fit 
with constrained δi, 
taken from * / KJBd ψ→

s
SM
ss φcos∆Γ=∆Γ
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ψφ/JBs → Combined result (HFAG)
(no assumption on the strong phases)

HFAG, 0808.1297

Numerical results for the two solutions:

HFAG: consistency of SM predictions is at level of 2.2 σ



Faller, Fleischer, Mannel
PRD 79 (09) 014005: Role of penguinsψφ/JBs →

Tree and penguin 
topologies contribute:
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: Role of penguinsψφ/JBs →

Reliable estimates of af, θf are missing.
Factorization would predict θf =180°.
Putting  af =0 would give:    sinφη f

mix
CPA =

Now depends also on  af, θf

mix
CPf Aη

φ

obtained for θf =180°

Values of                 
could lead to  

1≈fa
%)10(−≈ OAmix

CPfη



: Role of penguinsψφ/JBs → Control channel:                                0*0  / KJBs ψ→

Two quantities to be exploited:
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Gronau, Rosner PLB 669 (08) 321
PLB 666 (08)185SU(3) accuracy: The case of the strong phases

Extracting strong phases from                             (as already used by D0)
would solve the discrete ambiguity in the determination of φ

Analogous topologies:

0* / KJBd ψ→

Problem: φ has also a singlet component

extra diagrams
tree

electroweak penguins

gluonic penguins

OZI suppressed

+ others
doubly OZI supp.

This has a counterpart in 
where it has been estimated to be negligible

φψ  /JBd →

The similarity of amplitudes and strong phases
in                                 and 
seems a well-founded assumption

0* / KJBd ψ→ψφ/JBs →



Other channels induced by M.V. Carlucci, P. Colangelo, FDF
in preparationsccb →

A different charmonium state:

φηφχφψ cscss BBSB →→→    ,    , )2( 0

ψ + a different light meson:
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Necessity to detect
photons in the final state

Twofold role of f0 : - background to
- interesting final state with

ψφ/JBs →
−+→ ππ)980(0f

1            (980)0 −=→ fs fB ηψ

Improving theoretical prediction
- comparing different form factor sets
- exploting results of SCET- based sum rules
- describing η-η’ mixing in the flavour basis
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Contribution of S-wave to                  ψφ/JBs →

There might be an S-wave contribution to the K+K- system in the region of the φ

− it would bias the result
− neglecting this contribution makes the error smaller

In the case of                              BaBar finds that the S-wave component Kπ is  ~8%

It may be argued that due to the narrowness of φ ( Γ=4.3 MeV )
with respect to K* (Γ=51 MeV ) the S-wave component under the φ is smaller

0*/ KJBd ψ→

BaBar PRD 76 (07) 031102

True?



Contribution of S-wave to                  ψφ/JBs → Stone & Zhang 0812.2832

Hints on the role of  S-wave contribution from other channels

+−+→ πKKDs

1.03.0
)(

))980(( 0 ±=
→→Γ

→→Γ
+−+++

+−+++

πφπ
ππ

KKD
KKfD

s

s Analysis done over all of phase space
What about the low mass region?

Recent analysis performed by CLEO in the low mass region fitting data
with a BW for the φ plus a linear S-wave component
Conclusion: The fraction of S-wave depends on the mass interval considered 

but is O(10%) in the region around φ

CLEO, PRL 100 (08) 161804



Contribution of S-wave to                  ψφ/JBs →

How to get rid of this contribution?

Partial wave analysis

A. Palano, talk at LHC-b meeting
Bologna, January 09 
www.ba.infn.it/~palano/antimo_f0.pdf

Large interference between S-wave (f0(980)) and P-wave (φ(1020)) in Y1
0

Y2
0 takes contribution only from P-wave



−+→→ ππψ 00       / ffJBs

• No angular analysis required
• No photons to detect

From analysis of BaBar data about the modes
It is  expected that  

       +−+++−++ →→ ππππ KKDD ss

)%219(
) ,/(
) ,/( 00 ±=
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→→
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KKJBB
ffJBB

s

s
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New Physics or not New Physics….



sm∆ Experimental weighted average (HFAG)

To be compared to (Lenz & Nierste 07) : 

-1ps      12.078.17 ±=∆ sm

-1ps   )68.630.19( ±=∆ SM
sm

What happens in other NP scenarios?

is favoured in    − Two Higgs Doublet Model type II
− MSSM with low Tan β 
− Littlest Higgs model without T-parity

 − Universal Extra dimensions
 
 is favoured in     − MSSM with MFV and large Tan β

( )SM
ss mm ∆>∆

( )SM
ss mm ∆<∆



sm∆

Relations between ∆ms and  other observables hold either in SM or in MFV.
Violation of such relations would imply new low energy operators
and/or new sources of flavour/CP violation
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Blanke et al. JHEP 10 (06) 003
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Value of Rb from tree level processes

Measured value of sin 2β

Updated values of ξ and of ∆ms 
seem to give a better agreement



Ball & Fleischer
EPJC 48 (06) 413
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New Physics: a model independent parameterisation
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Rare b s induced Bs decays Can provide information on NP scenarios, 
in particular can constrain the size of 
possible extra dimensions

Appelquist-Cheng-Dobrescu (ACD)  Model 
with a single Universal Extra Dimension (UED) 

• Compactification on a orbifold: the 5th dim y varies on a circle of radius R
with periodic boundary conditions; fields are required to have a definite parity
under   y        - y

• MFV model

• The existence of an extra dim reflects in the appearance of a tower of KK modes for
each particle of the model             

Modification of the Wilson coefficients in effective hamiltonians
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A bound on 1/R might be established studying various observables in  these modes
Colangelo, Ferrandes, Pham, FDF
PRD 77 (08) 019φγ→sB Branching ratio vs 1/R

SM result

To be compared to Belle’s result

νφν→sB
missing energy distribution

SM
1/R=500 GeV

Branching ratio vs 1/R

φ long. pol. 

φ trans. pol. 

SM



Conclusions

Bs Physics will give us fundamental insights in the research for New Physics

Future directions:

• reduction of theoretical and experimental uncertainties

• explore new channels

• analyse rare Bs decays as a probe of new Physics
(combine with analogous information from rare B decays)
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Untagged decays

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ∆Γ

+⎟
⎠
⎞

⎜
⎝
⎛ ∆Γ

+=

=→Γ+→Γ=Γ

∆Γ
Γ−

2
sinh

2
cosh  1

))(())((),(
22

00

tAteAN

ftBftBtf

t
fff λ

Integrating over time:

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Γ
∆Γ

+
Γ

∆Γ
+

Γ
+=

=Γ=

∆Γ

∞

∫

2

2
22

0

2
111

2

),(  
2
1)(

OAA
N

tfdtfBr

ff
f

untagged

λ

( )( )21
2

1)(2),( tOtAefBrtf t
untagged ∆Γ+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

Γ
−

∆Γ
+Γ=Γ ∆Γ

Γ−

∆Γ⋅∆Γ AA fit to this quantity allows to determine the product 



Asymmetries in fs final state
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