Flavi A
B_{s} : Theory status and perspectives

Outline

- Notations \& known facts about mixing of neutral B mesons
- Determination of $\Delta \mathrm{m}, \Delta \Gamma, \phi$ - theory predictions
- (some) proposed strategies
- experimentally adopted strategies
- $B_{s} \rightarrow J / \psi \phi$: discussion of some theoretical uncertainties - role of
- SU(3) for strong phases
- Other channels: $-f_{0}(980)$ as a S-wave background to ϕ
- $B_{s} \rightarrow J / \psi f_{0}(980) \quad$ as an alternative mode
- other interesting modes
- New Physics: - $\Delta \mathrm{m}_{\mathrm{s}}$

$$
-\phi
$$

- B_{s} Physics not related to CP violation: some interesting decay modes
- Conclusions

$B_{s}-\bar{B}_{s}$ mixing

governed by Schroedinger-like eq.

$$
i \frac{d}{d t}\binom{\left|B_{s}(t)\right\rangle}{\left|\bar{B}_{s}(t)\right\rangle}=\left(\hat{M}-i \frac{\hat{\Gamma}}{2}\right)\binom{\left|B_{s}(t)\right\rangle}{\left|\bar{B}_{s}(t)\right\rangle}
$$

$\hat{M}, \hat{\Gamma} \quad 2 \times 2$ hermitian matrices $\Rightarrow \quad M_{21}=M_{12}^{*} \quad \Gamma_{21}=\Gamma_{12}^{*}$

$$
C P T \quad \Rightarrow \quad M_{11}=M_{22} \quad \Gamma_{11}=\Gamma_{22}
$$

mass eigenstates

$$
\begin{array}{|l}
\left|B_{s, L}\right\rangle=p\left|B_{s}\right\rangle+q\left|\bar{B}_{s}\right\rangle \\
\left|B_{s, H}\right\rangle=p\left|B_{s}\right\rangle-q\left|\bar{B}_{s}\right\rangle
\end{array} \quad \text { with } \quad \begin{aligned}
& M_{L}, \Gamma_{L} \\
& M_{H}, \Gamma_{H}
\end{aligned}
$$

Usual notations:

$$
\begin{array}{|ll}
\Delta m=M_{H}-M_{L} & \Delta \Gamma=\Gamma_{L}-\Gamma_{H} \\
\phi=\arg \left(-\frac{M_{12}}{\Gamma_{12}}\right) & \phi_{M}=\arg \left(M_{12}\right)
\end{array}
$$

$B_{s}-\bar{B}_{s}$ mixing

Exact results: $\begin{aligned} & (\Delta m)^{2}-\frac{1}{4}(\Delta \Gamma)^{2}=4\left|M_{12}\right|^{2}-\left|\Gamma_{12}\right|^{2} \\ & (\Delta m)(\Delta \Gamma)=4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right)\end{aligned} \quad \frac{q}{p}=-\frac{\Delta m-i \frac{\Delta \Gamma}{2}}{2\left(M_{12}-i \frac{\Gamma_{12}}{2}\right)}$
but using:

$$
\left|\Gamma_{12}\right| \ll\left|M_{12}\right| \quad \begin{aligned}
& \Delta m=2\left|M_{12}\right| \\
& \Delta \Gamma=2\left|\Gamma_{12}\right| \cos \phi
\end{aligned}
$$

If CP were conserved...

$$
\begin{array}{lll}
M_{12}=M_{21}=M_{12}^{*} & \Rightarrow & \phi_{M}=0 \\
\Gamma_{12}=\Gamma_{21}=\Gamma_{12}^{*} & \Rightarrow & \phi=0
\end{array}
$$

$$
C P\left|B_{s, L}\right\rangle=-\left|B_{s, L}\right\rangle
$$

$$
C P\left|B_{s, H}\right\rangle=\left|B_{s, H}\right\rangle
$$

(in the phase convention $C P\left|B_{s}\right\rangle=-\left|\bar{B}_{s}\right\rangle$)

$B_{s}-\bar{B}_{s}$ mixing

$\left|\mathrm{M}_{12}\right|,\left|\Gamma_{12}\right|, \phi=\arg \left(-\mathrm{M}_{12} / \Gamma_{12}\right)$ are related to observables
$\Delta \mathrm{m}$ and $\Delta \Gamma$ come from real and Im parts of box diagrams:

$\Delta \mathrm{m}=2\left|\mathrm{M}_{12}\right| \rightarrow\left|\mathrm{M}_{12}\right|$ takes contribution from heavy internal particles: t, NP
$\Delta \Gamma=2\left|\Gamma_{12}\right| \cos \phi \rightarrow\left|\Gamma_{12}\right|$ sensible to light internal particles u,c
Any NP would also affect tree level decays \Perp assume no NP in Γ_{12}
NP would change instead $\left|\mathrm{M}_{12}\right|$

$$
\begin{aligned}
& B_{q}-\bar{B}_{q} \text { mixing } \phi_{M}=\arg \left(M_{12}\right) \\
& \phi=\arg \left(-\frac{M_{12}}{\Gamma_{12}}\right)=\phi_{\mathrm{M}}-\arg \left(-\Gamma_{12}\right) \quad \Gamma_{12} \\
& \text { int }
\end{aligned}
$$

Γ_{12} takes contribution from internal us exchange

$$
\arg \left(\Gamma_{12}\right) \approx 2 \arg \left(V_{c b} b_{c q}^{*}\right), 2 \arg \left(V_{c b} V_{c q}^{*}\right) \arg \left(V_{u b} V_{u q}^{*}\right), 2 \arg \left(V_{u b} V_{u q}^{*}\right)
$$

Only neglecting these contributions leads to

$$
2 \beta_{q}=2 \arg \left(-\frac{V_{t b} V_{t q}^{*}}{V_{c b} V_{c q}^{*}}\right)
$$

$B_{d}-\bar{B}_{d}$

$$
\beta_{d}=\arg \left(-\frac{V_{t b} V_{t d}^{*}}{V_{c b} V_{c d}^{*}}\right)=0.38 \pm 0.02 \mathrm{rad}
$$

$$
\beta_{s}=\arg \left(-\frac{V_{t b} V_{t s}^{*}}{V_{c b} V_{c s}^{*}}\right) \approx 0.02 \mathrm{rad}
$$

$$
B_{s}-\bar{B}_{s} \text { mixing }
$$

$$
\phi=\arg \left(-\frac{M_{12}}{\Gamma_{12}}\right)
$$

$$
\longrightarrow \text { In the SM it turns out to be tiny }
$$

$\Delta \Gamma=2\left|\Gamma_{12}\right| \cos \phi \quad \leadsto \quad$ Since NP should not affect Γ_{12} it can only modify $\cos \phi$

NP can only decrease the value of $\Delta \Gamma$ with respect to SM

Theory predictions: $\Delta \mathrm{m}$

Calculation of the box diagram with internal top quarks gives rise to an effective hamiltonian composed by a single operator $Q=\bar{s}_{L} \gamma_{\nu} b_{L} \overline{\bar{S}}_{L} \gamma^{\nu} b_{L}$ with:

$$
\left\langle\bar{B}_{s}\right| Q\left|B_{s}\right\rangle=\frac{2}{3} f_{B_{s}}^{2} M_{B_{s}} \frac{B_{B_{s}}}{b(\mu)} \longrightarrow \quad \text { renorm. group invariant }
$$

$$
\rightarrow b(\mu)=\left[\alpha_{s}(\mu)\right]^{-6 / 23}
$$ at LO

The Wilson coefficient of \boldsymbol{Q} is

$$
C\left(m_{t}, M_{W}, \mu=\right)=M_{W}^{2} S\left(x_{t}\right) \hat{\eta}_{b} b(\mu)
$$

Perturbative quantities: $\quad S_{0}\left(x_{t}\right) \quad x_{t}=\frac{m_{t}^{2}}{M_{W}^{2}} \quad$ Inami , Lim

Result:

$\hat{\eta}_{B}$
Buras et al.

$$
\Delta m_{s}=2 M_{12}=\frac{G_{F}^{2}}{6 \pi^{2}}\left|V_{t b} V_{t s}^{*}\right|^{2} M_{W}^{2} S_{0}\left(x_{t}\right) \hat{\eta}_{B} B_{B s} f_{B_{s}}^{2} M_{B_{s}}
$$

$$
\frac{\Delta m_{s}}{\Delta m_{d}}=\frac{M_{B_{s}}}{M_{B_{d}}}\left|\frac{V_{t s}^{2}}{V_{t d}^{2}}\right| \xi^{2} \quad \xi=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}
$$

Theory predictions: $\Delta \mathrm{m}$

Plots from Lubicz and Tarantino, 0807.4605

Very recent HPQCD results, with $\mathrm{n}_{\mathrm{f}}=2+1$

$$
f_{B_{s}}=231 \pm 15 \quad \mathrm{MeV}
$$

$$
B_{B_{s}}=0.86 \pm 0.06
$$

Sum rules give results in the same ballpark

$$
\xi=1.258 \pm 0.033
$$

Final result:

$$
\Delta m^{S M}=(19.30 \pm 6.68) \mathrm{ps}^{-1}
$$

Lenz \& Nierste, JHEP 06 (07) 072

Theory predictions: $\Delta \Gamma$

Exploiting that $m_{t}, M_{W} \gg m_{b}$ heavy particles can be integrated out The effective hamiltonian stems from:

> The imaginary part is obtained using the optical theorem \quad| Γ_{12} is written as an expansion |
| :--- |
| in $\Lambda / \mathrm{m}_{\mathrm{b}}$ and α_{s} |

At leading order two operators contribute:
However:

$$
\begin{aligned}
& Q=\bar{q}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) b_{\alpha} \bar{q}_{\beta} \gamma_{\mu}\left(1-\gamma_{5}\right) b_{\beta} \\
& Q_{S}=\bar{q}_{\alpha}\left(1+\gamma_{5}\right) b_{\alpha} \bar{q}_{\beta}\left(1+\gamma_{5}\right) b_{\beta}
\end{aligned}
$$

- almost complete cancellation of the coefficient of $\boldsymbol{Q} \| \square$ Enters also in $\Delta \mathbf{m}$
- too large $1 / \mathrm{m}_{\mathrm{b}}$ and α_{s} corrections

A different basis can be used, with a better behaved expansion

Define: $\quad \tilde{Q}_{S}=\bar{q}_{\alpha}\left(1+\gamma_{5}\right) b_{\beta} \bar{q}_{\beta}\left(1+\gamma_{5}\right) b_{\alpha} \quad\left\langle B_{s}\right| \tilde{Q}_{S}\left|\bar{B}_{s}\right\rangle=\frac{1}{3} M_{B_{s}}^{2} f_{B_{s}}^{2} \widetilde{B}_{s}^{\prime}$

Using the fact that

$$
R_{0}=Q_{s}+\alpha_{1} \tilde{Q}_{S}+\frac{\alpha_{2}}{2} Q=O\left(\frac{1}{m_{b}}\right)
$$

one can trade the old basis $\left\{Q, Q_{S}\right\}$ for the new basis $\left\{Q, \tilde{Q}_{S}\right\}$
Result:

$$
\Delta \Gamma_{s}^{S M}=\left(\frac{f_{B_{s}}}{240 \mathrm{MeV}}\right)^{2}\left[(0.105 \pm 0.016) B+(0.024 \pm 0.004) \tilde{B}_{s}^{\prime}+O\left(\frac{1}{m_{b}}\right)\right] \mathrm{ps}^{-1}
$$

$$
\left(\frac{\Delta \Gamma_{s}}{\Delta m_{s}}\right)^{S M}=[49.7 \pm 9.4] \times 10^{-4}
$$

Using the CDF result: $\Delta m_{s}=17.77 \pm 0.10 \pm 0.07 \mathrm{ps}^{-1}$

$$
\begin{aligned}
& \Delta \Gamma_{s}^{S M}=0.088 \pm 0.017 \quad \mathrm{ps}^{-1} \\
& \frac{\Delta \Gamma_{s}^{S M}}{\Gamma_{s}}=0.127 \pm 0.024
\end{aligned}
$$

Experimental violation of these results would signal $N P$ in $\Delta \mathrm{m}_{\mathrm{s}}$ or $\Delta \Gamma_{\mathrm{s}}$

Time evolution

$$
\begin{aligned}
& \left|B^{0}(t)\right\rangle=\frac{e^{-i m t}}{2}\left\{\left|B^{0}\right\rangle\left[e^{-\frac{i \Delta m t}{2}} e^{-\frac{\Gamma_{H} t}{2}}+e^{\frac{i \Delta m t}{2}} e^{-\frac{\Gamma_{L} t}{2}}\right]+\frac{q}{p}\left|\bar{B}^{0}\right\rangle\left[e^{\frac{i \Delta m t}{2}} e^{-\frac{\Gamma_{L} t}{2}}-e^{-\frac{i \Delta m t}{2}} e^{-\frac{\Gamma_{H} t}{2}}\right]\right\} \\
& \left|\bar{B}^{0}(t)\right\rangle=\frac{e^{-i m t}}{2}\left\{\frac{p}{q}\left|B^{0}\right\rangle\left[-e^{-\frac{i \Delta m t}{2}} e^{-\frac{\Gamma_{H} t}{2}}+e^{\frac{i \Delta m t}{2}} e^{-\frac{\Gamma_{L} t}{2}}\right]+\left|\bar{B}^{0}\right\rangle\left[e^{\left.\left.-\frac{i \Delta m t}{2} e^{-\frac{\Gamma_{H} t}{2}}+e^{\frac{i \Delta m t}{2}} e^{-\frac{\Gamma_{L} t}{2}}\right]\right\}} \text { was pure } \overline{\mathrm{B}}^{0} \text { at } \mathrm{t}=0\right.\right.
\end{aligned}
$$

Definitions:

$$
\begin{array}{ll}
A_{f}=\left\langle f \mid B^{0}\right\rangle & \bar{A}_{f}=\left\langle f \mid \bar{B}^{0}\right\rangle \\
A_{\bar{f}}=\left\langle\bar{f} \mid B^{0}\right\rangle & \bar{A}_{\bar{f}}=\left\langle\bar{f} \mid \bar{B}^{0}\right\rangle \\
\hline \lambda_{f}=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}} &
\end{array}
$$

$$
A_{C P}^{d i r}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}} \quad A_{C P}^{\text {mix }}=-2 \frac{\operatorname{Im}\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}} \quad A_{\Delta \Gamma}=-2 \frac{\operatorname{Re}\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}}
$$

Time dependent decay rates

$$
\begin{aligned}
\Gamma\left(B^{0}(t) \rightarrow f\right)=\mathcal{N}_{f}\left|A_{f}\right|^{2} e^{-\Gamma t} & \left\{\frac{1+\left|\lambda_{f}\right|^{2}}{2} \cosh \frac{\Delta \Gamma t}{2}+\frac{1-\left|\lambda_{f}\right|^{2}}{2} \cos (\Delta m t)\right. \\
& \left.-\operatorname{Re} \lambda_{f} \sinh \frac{\Delta \Gamma t}{2}-\operatorname{Im} \lambda_{f} \sin (\Delta m t)\right\}
\end{aligned}
$$

$$
\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)=\mathcal{N}_{f}\left|A_{f}\right|^{2}(1+a) e^{-\Gamma t}\left\{\frac{1+\left|\lambda_{f}\right|^{2}}{2} \cosh \frac{\Delta \Gamma t}{2}-\frac{1-\left|\lambda_{f}\right|^{2}}{2} \cos (\Delta m t)\right.
$$

$$
\left.-\operatorname{Re} \lambda_{f} \sinh \frac{\Delta \Gamma t}{2}+\operatorname{Im} \lambda_{f} \sin (\Delta m t)\right\}
$$

$$
\begin{aligned}
& \Gamma\left(B^{0}(t) \rightarrow \bar{f}\right)=\mathcal{N}_{f}\left|\bar{A}_{\bar{f}}\right|^{2} e^{-\Gamma t}(1-a)\left\{\frac{1+\left|\lambda_{\bar{f}}\right|^{-2}}{2} \cosh \frac{\Delta \Gamma t}{2}-\frac{1-\left|\lambda_{\bar{f}}\right|^{-2}}{2} \cos (\Delta m t)\right. \\
&\left.-\operatorname{Re} \frac{1}{\lambda_{\bar{f}}} \sinh \frac{\Delta \Gamma t}{2}+\operatorname{Im} \frac{1}{\lambda_{\bar{f}}} \sin (\Delta m t)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\Gamma\left(\bar{B}^{0}(t) \rightarrow \bar{f}\right)=\mathcal{N}_{f}\left|\bar{A}_{\bar{f}}\right|^{2} e^{-\Gamma t} & \left\{\frac{1+\left|\lambda_{\bar{f}}\right|^{-2}}{2} \cosh \frac{\Delta \Gamma t}{2}+\frac{1-\left|\lambda_{\bar{f}}\right|^{-2}}{2} \cos (\Delta m t)\right. \\
& \left.-\operatorname{Re} \frac{1}{\lambda_{\bar{f}}} \sinh \frac{\Delta \Gamma t}{2}-\operatorname{Im} \frac{1}{\lambda_{\bar{f}}} \sin (\Delta m t)\right\}
\end{aligned}
$$

Determination of $\Delta \mathrm{m}, \Delta \Gamma, \phi$:
Strategies, experimental methods, theoretical uncertainties

$\Delta \mathrm{m}_{\mathrm{s}}$: experimental determination

Measured quantity: mixing amplitude
Dilution factor $\mathrm{D}=2 \mathrm{P}_{\mathrm{tag}}-1$

$$
A_{\text {mix }}(t)=\frac{N_{\text {mixed }}(t)-N_{\text {unmixed }}(t)}{N_{\text {mixed }}(t)+N_{\text {unmixed }}(t)}=-D \cos (\Delta m t)
$$

Number of particles decaying after mixing happened

Number of particles decaying -

$$
N_{\text {mixed }}(t) \propto \frac{1}{2}(1-\cos (\Delta m t))
$$

no mixing happened

$$
N_{\text {unmixed }}(t) \propto \frac{1}{2}(1+\cos (\Delta m t))
$$

- tagging of flavour at production
- final state flavour determined reconstructing flavour specific final states

$\rightarrow \Delta \Delta m_{s}=17.7 \pm 0.10($ stat $) \pm 0.07($ syst $) \quad \mathrm{ps}^{-1}$
$\Delta \mathrm{~m}_{\mathrm{s}}\left[\mathrm{ps}{ }^{-1}\right]$
D0 $\longrightarrow \Delta m_{s}=18.53 \pm 0.98($ stat + syst $) \quad \mathrm{ps}^{-1}$

Asymmetries

- Asymmetries in flavour specific final states $(f s)$
- Asymmetries in final CP eigenstates
- CP asymmetries in flavour specific final states

Flavour specific final state f :

$B^{0} \rightarrow f$	but	$\bar{B}^{0} \nrightarrow f$	\Rightarrow	$\bar{A}_{f}=0$	\Rightarrow
$\lambda_{f}=0$					
$\bar{B}^{0} \rightarrow \bar{f}$	but	$B^{0} \nrightarrow \bar{f}$	\Rightarrow	$A_{\bar{f}}=0$	\Rightarrow
			$\frac{1}{\lambda_{\bar{f}}}=0$		

CP eigenstate final state $f_{C P}$:

$$
f=f_{C P}=\eta_{f} \bar{f} \quad \eta_{f}= \pm 1
$$

Asymmetries in CP eigenstate final state

$$
\begin{aligned}
a_{f}(t) & =\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)-\Gamma\left(B^{0}(t) \rightarrow f\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)+\Gamma\left(B^{0}(t) \rightarrow f\right)}= \\
& =-\frac{A_{C P}^{\text {dir }} \cos (\Delta m t)+A_{C P}^{\text {mix }} \sin (\Delta m t)}{\cosh \left(\frac{\Delta \Gamma t}{2}\right)+A_{\Delta \Gamma} \sinh \left(\frac{\Delta \Gamma t}{2}\right)}
\end{aligned}
$$

(putting $a=\frac{\Delta \Gamma}{\Delta m} \operatorname{tg} \phi=0$)

If there is only one amplitude contributing to the decay:

$$
\begin{gathered}
\left|\frac{\bar{A}_{f}}{A_{f}}\right|=1 \Rightarrow\left|\lambda_{f}\right|=1 \Rightarrow A_{C P}^{d i r}=0 \quad A_{C P}^{\text {mix }}=\eta_{f} \sin \phi \quad A_{\Delta \Gamma}=-\eta_{f} \cos \phi \\
a_{f}(t)=-\frac{\eta_{f} \sin \phi \sin (\Delta m t)}{\cosh \left(\frac{\Delta \Gamma t}{2}\right)-\eta_{f} \cos \phi \sinh \left(\frac{\Delta \Gamma t}{2}\right)}
\end{gathered}
$$

CP Asymmetries in $f s$ final state

Assuming no direct CP violation: $A_{f}=\bar{A}_{\bar{f}}$

$$
\begin{aligned}
a_{f s}^{C P} & =\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)-\Gamma\left(B^{0}(t) \rightarrow \bar{f}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)+\Gamma\left(B^{0}(t) \rightarrow \bar{f}\right)}=\frac{\left|\Gamma_{12}\right|}{\left|M_{12}\right|} \sin \phi \\
& =a=\frac{\Delta \Gamma}{\Delta m} \operatorname{tg} \phi
\end{aligned}
$$

Related to an untagged quantity:

$$
\begin{aligned}
& A_{f s}^{\text {untaged }}=\frac{\int_{0}^{\infty} d t[\Gamma(f, t)-\Gamma(\bar{f}, t)]}{} \\
& \int_{0}^{\infty} d t[\Gamma(f, t)+\Gamma(\bar{f}, t)] \\
&=\frac{a_{f s}}{2} \frac{x_{s}^{2}+y_{s}^{2}}{1+x_{s}^{2}}
\end{aligned}
$$

$$
x_{s}=\frac{\Delta m}{\Gamma} \quad y_{s}=\frac{\Delta \Gamma}{2 \Gamma}
$$

CP Asymmetries in $f s$ final state: D0 analysis

Untagged analysis of semileptonic decays | $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} v X$ |
| :---: |
| $\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \mu^{-} v X$ |

Results obtained using: $A_{f s}^{\text {untagged }}=\frac{a_{f s}}{2} \frac{x_{s}^{2}+y_{s}^{2}}{1+x_{s}^{2}}$

$$
\begin{aligned}
& A_{f s}^{\text {untagged }}=[1.23 \pm 0.97(\text { stat }) \pm 0.35(\text { syst })] \times 10^{-2} \\
& a_{f s}=\frac{\Delta \Gamma_{s}}{\Delta m_{s}} \operatorname{tg} \phi=[2.45 \pm 1.93(\text { stat }) \pm 0.35(\text { syst })] \times 10^{-2}
\end{aligned}
$$

Can be used to determine $\Delta \Gamma_{s}$ and ϕ
D0 Collab.,PRD76 (07) 057101
Another possibility is to use the relation to the analogous asymmetry in B_{d} decays and B factories results Combined result

$$
\begin{aligned}
& a_{f s}=0.001 \pm 0.0090 \\
& \Delta \Gamma_{s}=0.13 \pm 0.09 \quad \mathrm{ps}^{-1} \\
& \phi=-0.70 \pm_{0.39}^{0.47}
\end{aligned}
$$

The final state is an admixture of different CP eigenstates
\longrightarrow can be disentangled considering the angular distribution of the decay products:

$$
J / \psi \rightarrow \ell^{+} \ell^{-} \quad \phi \rightarrow K^{+} K^{-}
$$

Three independent polarization amplitudes: with

$$
|A|^{2}=\left|A_{0}\right|^{2}+\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}
$$

J / ψ rest frame

ϕ rest frame
θ, ϕ, ψ, transversity angles

$B_{s} \rightarrow J / \psi \phi$

Simple example: time-dependent one-angle distribution:

$$
\underbrace{\frac{d \Gamma(t)}{d \cos \theta} \propto\left(\left.A_{0}(t)\right|^{2}+\left|A_{\|}(t)\right|^{2}\right) \frac{3}{8}\left(1+\cos ^{2} \theta\right)+\underbrace{\left|A_{\perp}(t)\right|^{2}}_{\text {CP odd }} \frac{3}{4} \sin ^{2} \theta}_{\text {CP even }}
$$

The full three angle distribution contains more information.
However:

- it is more involved
- depends also on the strong phases $\delta_{1}=\arg \left\{A_{\|}(0)^{*} A_{\perp}(0)\right\} \quad \delta_{2}=\arg \left\{A_{0}(0)^{*} A_{\perp}(0)\right\}$

D0 analysis of the angular distribution in flavour untagged $\mathrm{B}_{\mathrm{s}}{ }^{0}$ mesons Fitting:
$\frac{d^{3} \Gamma}{d \cos \theta d \phi d \psi}$

The result has a four-fold ambiguity $\pm \phi, \pm(\pi-\phi)$ due to the inavriance under simultaneous exchange of the sign of $\sin \phi, \cos \delta_{1}, \cos \delta_{2}$

Two sets of solutions:

CDF and D0 analysis of flavour tagged decay
o combines information obtained from both the time dependence both the angular distributions to disentangle the various CP components

- allows to reduce the four-fold ambiguity in a twofold ambiguity

CDF Results:

$$
\text { at } 68 \% \text { C.L. } \quad 2 \beta_{s} \in[0.32,2.82]
$$

while imposing the SM prediction for Γ_{12} :

$$
2 \beta_{s} \in[0.24,1.36] \cup[1.78,2.90]
$$

Assuming SM predictions for $2 \beta_{\mathrm{s}}$ and $\Delta \Gamma$, CDF finds that the probability of a deviation as large as the level of the observed data is 15%

Allowed ranges at 90\% C.L.

$-1.22<\phi<-0.08$	$-3.06<\phi<-1.92$
$0.05<\Delta \Gamma<0.33 \mathrm{ps}^{-1}$	$-0.33<\Delta \Gamma<-0.05 \mathrm{ps}^{-1}$

the SM hypothesis for ϕ has a probability of 8.5 \%

D0 performs also a fit with constrained δ_{i}, taken from $B_{d} \rightarrow J / \psi K^{*}$

$$
\begin{aligned}
& \Delta \Gamma_{s}=0.19 \pm 0.07(\text { stat }) \pm_{0.01}^{0.02}(\text { syst }) \quad \mathrm{ps}^{-1} \\
& \phi=-0.57 \pm_{0.30}^{0.24}(\text { stat }) \pm_{0.02}^{0.08}(\text { syst })
\end{aligned}
$$

Numerical results for the two solutions:

$$
\begin{aligned}
\Delta \Gamma_{s} & =0.154_{-0.070}^{+0.054} \mathrm{ps}^{-1}, \\
& \in[+0.036,+0.264] \text { at } 90 \% \mathrm{CL} \\
\phi_{s}^{J / \psi \phi}=-2 \beta_{s}^{J / \psi \phi} & =-0.77_{-0.37}^{+0.29} \mathrm{rad}, \\
& \in[-1.47,-0.29] \text { at } 90 \% \mathrm{CL}, \\
\hline \Delta \Gamma_{s} & =-0.154_{-0.054}^{+0.070} \mathrm{ps}^{-1}, \\
& \in[-0.264,-0.036] \text { at } 90 \% \mathrm{CL} \\
\phi_{s}^{J / \psi \phi}=-2 \beta_{s}^{J / \psi \phi} & =-2.36_{-0.29}^{+0.37} \mathrm{rad}, \\
& \in[-2.85,-1.65] \text { at } 90 \% \mathrm{CL} .
\end{aligned}
$$

HFAG: consistency of SM predictions is at level of 2.2σ

$B_{s} \rightarrow J / \psi \phi$: Role of penguins

Tree and penguin topologies contribute:

T

$A\left(B_{s}^{0} \rightarrow\right.$
Defining:

$$
Q_{f}=\lambda^{2} A\left(T+P_{c}-P_{t}\right)
$$

$$
R_{b}=\left(1-\frac{\lambda^{2}}{2}\right) \frac{1}{\lambda}\left|\frac{V_{u b}}{V_{c b}}\right| \quad \varepsilon=\frac{\lambda^{2}}{1-\lambda^{2}}
$$

$$
a_{f} e^{i \theta_{f}}=R_{b}\left[\frac{P_{u}-P_{t}}{T+P_{c}-P_{t}}\right] \quad \longrightarrow \quad \theta_{\mathrm{f}} \text { strong CP-invariant phase }
$$

$$
\begin{aligned}
& A\left(B_{s}^{0} \rightarrow(J / \psi \phi)_{f}\right)=\left(1-\frac{\lambda^{2}}{2}\right) Q_{f}\left[1+\varepsilon a_{f} e^{\left.i \theta_{f} e^{i \gamma}\right]}\right. \\
& A\left(\bar{B}_{s}^{0} \rightarrow(J / \psi \phi)_{f}\right)=\eta_{f}\left(1-\frac{\lambda^{2}}{2}\right) Q_{f}\left[1+\varepsilon a_{f} e^{i \theta_{f}} e^{-i \gamma}\right]
\end{aligned}
$$

Doubly (ε)
Cabibbo -suppressed contributions: Negligible?

$B_{s} \rightarrow J / \psi \phi$: Role of penguins

Reliable estimates of $a_{\mathrm{f}}, \theta_{\mathrm{f}}$ are missing.
Factorization would predict $\theta_{\mathrm{f}}=180^{\circ}$.
Putting $a_{\mathrm{f}}=0$ would give: $A_{C P}^{\operatorname{mix}}=\eta_{f} \sin \phi$

Now depends also on a_{f}, θ_{f}

$B_{s} \rightarrow J / \psi \phi$: Role of penguins

Control channel: $\quad B_{s}^{0} \rightarrow J / \psi K^{* 0}$

Two quantities to be exploited:

$$
\begin{aligned}
& H_{f}=\frac{1}{\varepsilon}\left|\frac{Q_{f}}{Q_{f}^{\prime}}\right|^{2} \frac{\Gamma^{\prime}(f, t=0)}{\Gamma(f, t=0)}=\frac{1-2 a_{f}^{\prime} \cos \theta_{f}^{\prime} \cos \gamma+a_{f}^{\prime 2}}{1+2 \varepsilon a_{f} \cos \theta_{f} \cos \gamma+\varepsilon^{2} a_{f}^{2}} \quad \longrightarrow \begin{array}{l}
\text { Primed quantities refer to } \\
B_{s}^{0} \rightarrow J / \psi K^{* 0}
\end{array} \\
& A_{C P}^{\prime \text { dir }}=\frac{2 a_{f}^{\prime} \sin \theta_{f}^{\prime} \sin \gamma}{1-2 a_{f}^{\prime} \cos \theta_{f}^{\prime} \cos \gamma+a_{f}^{\prime 2}}
\end{aligned}
$$

Measuring $H_{f}, A_{C P}^{\prime d i r} \quad$ would fix $\quad a_{f}^{\prime} \approx a_{f} \quad \theta_{f}^{\prime} \approx \theta_{f}$
Example:

The twofold ambiguity may be solved by comparison with $B_{d} \rightarrow J / \psi \rho$

However notice that theoretical estimates provide $\left|\frac{Q_{f}^{\prime}}{Q_{f}}\right| \approx 0.2-1.0$

SU(3) accuracy: The case of the strong phases

Extracting strong phases from $B_{d} \rightarrow J / \psi K^{* 0} \quad$ (as already used by D0) would solve the discrete ambiguity in the determination of ϕ

Analogous topologies:

electroweak penguins

gluonic penguins

Problem: ϕ has also a singlet component

This has a counterpart in $\quad B_{d} \rightarrow J / \psi \phi$ where it has been estimated to be negligible

The similarity of amplitudes and strong phases in $\quad B_{s} \rightarrow J / \psi \phi \quad$ and $\quad B_{d} \rightarrow J / \psi K^{* 0}$ seems a well-founded assumption

Other channels induced by $\bar{b} \rightarrow \bar{c} c \bar{s}$

M.V. Carlucci, P. Colangelo, FDF in preparation
A different charmonium state:

$$
B_{s} \rightarrow \psi(2 S) \phi, \quad B_{s} \rightarrow \chi_{c 0} \phi, \quad B_{s} \rightarrow \eta_{c} \phi
$$

会 $\psi+$ a different light meson:

$B_{s} \rightarrow \psi \eta$
$B_{s} \rightarrow \psi \eta^{\prime}$

Necessity to detect photons in the final state

$$
\begin{aligned}
& B\left(B_{s} \rightarrow \psi \eta\right)=9.3 \times 10^{-5} \\
& B\left(B_{s} \rightarrow \psi \eta^{\prime}\right)=1.3 \times 10^{-4}
\end{aligned}
$$

Improving theoretical prediction

- comparing different form factor sets
- exploting results of SCET- based sum rules
- describing $\eta-\eta$ ' mixing in the flavour basis

Twofold role of f_{0} : - background to $B_{s} \rightarrow J / \psi \phi$

- interesting final state with $f_{0}(980) \rightarrow \pi^{+} \pi^{-}$

Contribution of S-wave to $B_{s} \rightarrow J / \psi \phi$

There might be an S-wave contribution to the $K^{+} K^{-}$system in the region of the ϕ

- it would bias the result
- neglecting this contribution makes the error smaller

In the case of $B_{d} \rightarrow J / \psi K^{* 0} \quad$ BaBar finds that the S-wave component $\mathrm{K} \pi$ is $\sim 8 \%$

It may be argued that due to the narrowness of ϕ ($\Gamma=4.3 \mathrm{MeV}$) with respect to $\mathrm{K}^{*}(\Gamma=51 \mathrm{MeV})$ the S-wave component under the ϕ is smaller

True?

Contribution of S-wave to $B_{s} \rightarrow J / \psi \phi$

Hints on the role of S-wave contribution from other channels
$D_{s} \rightarrow K^{+} K^{-} \pi^{+}$

$$
\begin{array}{|c}
\frac{\Gamma\left(D_{s}^{+} \rightarrow f_{0}(980) \pi^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)}{\Gamma\left(D_{s}^{+} \rightarrow \phi \pi^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)}=0.3 \pm 0.1 \rightarrow \begin{array}{l}
\text { Analysis done over all of phase space } \\
\text { What about the low mass region? }
\end{array} \\
\hline
\end{array}
$$

Recent analysis performed by CLEO in the low mass region fitting data with a BW for the ϕ plus a linear S-wave component Conclusion: The fraction of S-wave depends on the mass interval considered but is $O(10 \%)$ in the region around ϕ

Contribution of S-wave to $B_{s} \rightarrow J / \psi \phi$

How to get rid of this contribution?

$\square \mathrm{S}, \mathrm{P}$ waves and relative phase can be extracted using:

$$
\begin{aligned}
& \sqrt{4 \pi} Y_{0}^{0}=S^{2}+P^{2} \\
& \sqrt{4 \pi} Y_{1}^{0}=2 S P \cos \phi \\
& \sqrt{4 \pi} Y_{2}^{0}=0.894 P^{2}
\end{aligned}
$$

BaBar: $D_{s}^{+} \rightarrow \pi^{+} K^{+} K^{-}$

- Spherical harmonics moments Y_{l}^{0}

Large interference between S-wave $\left(f_{0}(980)\right)$ and P-wave ($\phi(1020)$) in $\mathrm{Y}_{1}{ }^{0}$ $\mathrm{Y}_{2}{ }^{0}$ takes contribution only from P-wave
A. Palano, talk at LHC-b meeting Bologna, January 09
www.ba.infn.it/~palano/antimo_f0.pdf

$$
B_{s} \rightarrow J / \psi f_{0} \quad f_{0} \rightarrow \pi^{+} \pi^{-}
$$

- No angular analysis required
- No photons to detect

From analysis of BaBar data about the modes $\quad D_{s}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \quad D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}$ It is expected that

$$
\frac{B\left(B_{s} \rightarrow J / \psi f_{0}, f_{0} \rightarrow \pi^{+} \pi^{-}\right)}{B\left(B_{s} \rightarrow J / \psi \phi, \phi \rightarrow K^{+} K^{-}\right)}=(19 \pm 2) \%
$$

New Physics or not New Physics....
$\Delta m_{s} \quad$ Experimental weighted average (HFAG)

$$
\Delta m_{s}=17.78 \pm 0.12 \quad \mathrm{ps}^{-1}
$$

To be compared to (Lenz \& Nierste 07) :

$$
\Delta m_{s}^{S M}=(19.30 \pm 6.68) \mathrm{ps}^{-1}
$$

What happens in other NP scenarios?
$\Delta m_{s}>\left(\Delta m_{s}\right)^{S M} \quad$ is favoured in - Two Higgs Doublet Model type II

- MSSM with low Tan β
- Littlest Higgs model without T-parity
- Universal Extra dimensions
$\Delta m_{s}<\left(\Delta m_{s}\right)^{S M}$ is favoured in - MSSM with MFV and large Tan β

Δm_{s}

Relations between $\Delta \mathrm{m}_{\mathrm{s}}$ and other observables hold either in SM or in MFV. Violation of such relations would imply new low energy operators and/or new sources of flavour/CP violation

$$
\begin{aligned}
& R_{b}=\sqrt{1+R_{t}^{2}-2 R_{t} \cos \beta} \\
& \cot \gamma=\frac{1-R_{t} \cos \beta}{R_{t} \sin \beta}
\end{aligned}
$$

R_{b} and γ can be determined from tree level decays
R_{t} and β from loop-induced processes and are therefore sensitive to NP
testing the previous relations may reveal NP effects
Recall that

$$
\begin{aligned}
& R_{t} \Leftrightarrow \Delta m_{s} \\
& \sin 2 \beta \Leftrightarrow A_{C P}^{m i x}\left(B_{d} \rightarrow J / \psi K_{s}\right)
\end{aligned}
$$

Value of R_{b} from tree level processes

Measured value of $\sin 2 \beta$

Updated values of ξ and of $\Delta \mathrm{m}_{\mathrm{s}}$ seem to give a better agreement

Effect of possible new physics on $\Delta \mathrm{m}_{\mathrm{s}} \rightarrow \Delta m_{s}=\Delta m_{s}^{S M}\left[1+k_{s} e^{i \sigma_{d}}\right]$
Quantify the deviation from the $\left.\mathrm{SM} \rightarrow \rho_{s}=\frac{\Delta m_{s}^{\text {eq }}}{\Delta m_{s}^{\text {SS }}} \right\rvert\,=\sqrt{1+2 k_{s} \cos \sigma_{s}+k_{s}^{2}}$

The blue line is $\rho_{\mathrm{s}}=1$

Even the perfect coincidence of $\Delta \mathrm{m}_{\mathrm{s}}{ }^{\text {exp }}$ with $\Delta \mathrm{m}_{\mathrm{s}}{ }^{\mathrm{SM}}$ would not exclude NP in B_{s} mixing: There are anyway allowed regions in the ($\sigma_{\mathrm{s}} k_{\mathrm{s}}$) plane

FIRST EVIDENCE OF NEW PHYSICS IN b $\leftrightarrow s$ TRANSITIONS
 (UTfit Collaboration)

With the procedure we followed to combine the available data, we obtain an evidence for NP at more than 3σ.

CKMfitter

J. Charles, Talk@ 2nd Workshop on Theory, Phenomenology \& Experiments in HF Physics - Capri 08
using all $\left(\phi_{s}, \Delta \Gamma_{s}\right)$ inputs, $\phi_{\mathrm{s}}=-2 \beta_{\mathrm{s}}$ is excluded at $2.4 \sigma_{\text {, }}$ while the 2D hypothesis $\phi_{s}=-2 \beta_{s}$, $\Delta \Gamma_{s}=\Delta \Gamma_{s}^{S M}$ is excluded at only 1.9σ
in contrast to UTfit, we do not find an "evidence" $(\geq 3 \sigma)$ for New Physics in ϕ_{s}, even with the non conservative treatment of Tevatron data errors

New Physics: a model independent parameterisation

New Physics may

$$
\begin{aligned}
& \Delta m_{s}=\Delta m_{s}^{S M}\left[1+k_{s} e^{i \sigma_{d}}\right] \\
& \phi_{s}=\phi_{s}^{S M}+\phi_{s}^{N P}=\phi_{s}^{S M}+\arg \left(1+k_{s} e^{i \sigma_{d}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{s}=\left|\frac{\Delta m_{s}^{\exp }}{\Delta m_{s}^{S M}}\right|=\sqrt{1+2 k_{s} \cos \sigma_{s}+k_{s}^{2}} \quad \Rightarrow \quad k_{s}=-\cos \sigma_{s} \pm \sqrt{\rho_{s}^{2}-\sin ^{2} \sigma_{s}} \\
& k_{s}=\frac{\tan \phi_{s}^{N P}}{\sin \sigma_{s}-\cos \sigma_{s} \tan \phi_{s}^{N P}}
\end{aligned}
$$

Constraints in the ($\sigma_{s,} k_{s}$) plane
 in particular can constrain the size of possible extra dimensions

```
Appelquist-Cheng-Dobrescu (ACD) Model with a single Universal Extra Dimension (UED)
```

- Compactification on a orbifold: the 5th $\operatorname{dim} y$ varies on a circle of radius \mathbf{R} with periodic boundary conditions; fields are required to have a definite parity under $y \rightarrow-y$
- MFV model
- The existence of an extra dim reflects in the appearance of a tower of KK modes for each particle of the model

Modification of the Wilson coefficients in effective hamiltonians

$$
\begin{gathered}
C\left(x_{t}, \frac{1}{R}\right)=C_{(0)}\left(x_{t}\right)+\sum_{n=1}^{\infty} C_{n}\left(x_{t}, x_{n}\right) \quad x_{n}=\frac{m_{n}^{2}}{M_{W}^{2}} \quad m_{n}=\frac{n}{R} \\
\text { SM résult }
\end{gathered}
$$

A bound on 1/R might be established studying various observables in these modes

Colangelo, Ferrandes, Pham, FDF PRD 77 (08) 019

$B_{s} \rightarrow \phi \nu \bar{v}$

Conclusions

B_{s} Physics will give us fundamental insights in the research for New Physics

Future directions:

- reduction of theoretical and experimental uncertainties
- explore new channels
- analyse rare B_{s} decays as a probe of new Physics (combine with analogous information from rare B decays)

Incontri di Fisica delle Alte Energie
 IFAE 2009 - VIII Edizione

15-17 Aprile Bari

Fisica elettrodebole e QCD Fisica oltre il Modello Standard Fisica del Sapore Neutrini e Fisica Astroparticellare Nuovi acceleratori Rivelatori Calcolo Tecnologie innovative

Comitato Locale
P. Colangelo, F. De Fazio, R.A. Fin)
B. Ghidini, S. My, E. Nappi, F. Romano

Segreteria
A. Lorusso, A. Silvestri
informazioni è registrazione http://ifae2009.ba.infn.it ifae2009@ba.infn.t.

Backup slides

Untagged decays

$$
\begin{aligned}
& \Gamma(f, t)=\Gamma\left(B^{0}(t) \rightarrow f\right)+\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)= \\
& =N_{f}\left|A_{f}\right|^{2}\left(1+\left|\lambda_{f}\right|^{2}\right) e^{-\Gamma t}\left[\cosh \left(\frac{\Delta \Gamma t}{2}\right)+A_{\Delta \Gamma} \sinh \left(\frac{\Delta \Gamma t}{2}\right)\right]
\end{aligned}
$$

Integrating over time:

$$
\begin{aligned}
& \operatorname{Br}(f)_{\text {untagged }}=\frac{1}{2} \int_{0}^{\infty} d t \Gamma(f, t)= \\
& =\frac{N_{f}}{2}\left|A_{f}\right|^{2}\left(1+\left|\lambda_{f}\right|^{2}\right) \frac{1}{\Gamma}\left[1+\frac{\Delta \Gamma}{2 \Gamma} A_{\Delta \Gamma}+O\left(\frac{(\Delta \Gamma)^{2}}{\Gamma^{2}}\right)\right]
\end{aligned}
$$

$$
\Gamma(f, t)=2 B r(f)_{\text {untagged }} \Gamma e^{-\Gamma t}\left[1+\frac{\Delta \Gamma}{2} A_{\Delta \Gamma}\left(t-\frac{1}{\Gamma}\right)\right]+O\left((\Delta \Gamma t)^{2}\right)
$$

A fit to this quantity allows to determine the product

$$
\Delta \Gamma \cdot A_{\Delta \Gamma}
$$

Asymmetries in $f s$ final state

$$
A_{0}(t)=\frac{\Gamma\left(B^{0}(t) \rightarrow f\right)-\Gamma\left(B^{0}(t) \rightarrow \bar{f}\right)}{\Gamma\left(B^{0}(t) \rightarrow f\right)+\Gamma\left(B^{0}(t) \rightarrow \bar{f}\right)}
$$

When $f=f s$

$$
\begin{aligned}
& \Gamma\left(B^{0}(t) \rightarrow f\right)=N_{f}\left|A_{f}\right|^{2} \frac{e^{-\Gamma t}}{2}\left[\cosh \left(\frac{\Delta \Gamma t}{2}\right)+\cos (\Delta m t)\right] \\
& \Gamma\left(B^{0}(t) \rightarrow \bar{f}\right)=N_{f}\left|\bar{A}_{f}\right|^{2} \frac{e^{-\Gamma t}}{2}(1-a)\left[\cosh \left(\frac{\Delta \Gamma t}{2}\right)-\cos (\Delta m t)\right]
\end{aligned}
$$

Assuming no direct CP violation: $\quad A_{f}=\bar{A}_{\bar{f}}$

$$
A_{f s}(t)=\frac{\cos (\Delta m t)}{\cosh \left(\frac{\Delta \Gamma t}{2}\right)}+\frac{a}{2}\left[1-\frac{\cos ^{2}(\Delta m t)}{\cosh ^{2}\left(\frac{\Delta \Gamma t}{2}\right)}\right]
$$

a being small: $a=\frac{\Delta \Gamma}{\Delta m} \operatorname{tg} \phi$

