UT ANALYSIS: THEORETICAL STATUS AND FUTURE PERSPECTIVES

Luca Silvestrini INFN, Rome

INTRODUCTION

- SM UTA: determination of CKM, prediction for CPV & FCNC, SM consistency check
- UUT & NP MI UTA: determination of CKM, prediction of SM contribution to CPV & FCNC, extraction of NP contrib.
- NP UTA: determination of CKM parameters, NP flavour couplings and masses, predictions, consistency check

SM UTA: PRESENT

Ferrara, 20/03/2009

Results from the Full Fit			
Parameter	Parameter Value ± Error		99.73% probability
ρ	0.154 ± 0.022	[0.110,0.198]	[0.089,0.220]
η	0.342 ± 0.014	[0.315,0.371]	[0.302,0.386]
α(^o)	92.0 ± 3.4	[85.1,99.2]	[81.9,102.7]
β(°)	22.0 ± 0.8	[20.5,23.7]	[19.7,24.6]
γ(°)	65.6 ± 3.3	[58.7,72.5]	[55.3,75.9]
2β+γ([°])	109.5 ± 3.5	[102,117]	[98,120]
sin 2α	-0.08 ± 0.12	[-0.32,0.16]	[-0.44,0.27]
sin 2β	0.695 ± 0.020	[0.656,0.736]	[0.636,0.757]
sin (2β+γ)	0.937 ± 0.022	[0.887,0.977]	[0.863,0.989]
sin2β _s	0.0366 ± 0.0015	[0.0336,0.0397]	[0.0322,0.0413]
lm λ _t [10 ⁻⁵]	13.6 ± 0.6	[12.4,14.6]	[11.9,15.2]
Re λ _t [10 ⁻³]	-0.318 ± 0.010	[-0.338,-0.298]	[-0.348,-0.288]
Δm_{s} (ps ⁻¹)	17.7 ± 0.1	[17.4,18.0]	[17.3,18.1]
V _{ub} [10 ⁻³]	3.60 ± 0.12	[3.37,3.86]	[3.26,4.00]
$ V_{cb} [10^{-2}]$	4.13 ± 0.05	[4.04,4.22]	[4.01,4.26]
V _{td} [10 ⁻³]	8.51 ± 0.22	[8.06,8.94]	[7.84,9.17]
Rb	0.376 ± 0.013	[0.352,0.403]	[0.340,0.418]
Rt	0.911 ± 0.022	[0.865,0.956]	[0.841,0.978]
V _{td} /V _{ts}	0.209 ± 0.0075	[0.198,0.220]	[0.193,0.225]
Јср	2.98 ± 0.12	[2.75,3.22]	[2.68,3.31]

Luca Silvestrini

SM CONSISTENCY CHECK

• Compare direct and indirect (from all other observables) determinations

	direct	indirect	pull
sin 2β	0.668 ± 0.028	0.736 ± 0.034	1.5
V _{ub} 10 ³	3.5 ± 0.4 (excl) 3.99 ± 0.15 ± 0.4 (incl)	3.48 ± 0.16	1.6
∆m _s [ps⁻¹]	17.77 ± 0.12	16.8 ± 1.6	
β _s [°]	-18 ± 8	1.05 ± 0.04	2.9
BR(B $\rightarrow \tau v$) 10 ⁴	1.73 ± 0.34	0.85 ± 0.11	2.4

UTA & NP in $\Delta F=2$

Consider ratios of (SM+NP)/SM Δ F=2 amplitudes

$$C_{B_{q}} e^{2i\phi_{B_{q}}} = \frac{\langle B_{q} | H_{\text{eff}}^{\text{full}} | \bar{B}_{q} \rangle}{\langle B_{q} | H_{\text{eff}}^{\text{SM}} | \bar{B}_{q} \rangle} = \frac{A_{q}^{\text{SM}} e^{2i\phi_{q}^{\text{SM}}} + A_{q}^{\text{NP}} e^{2i(\phi_{q}^{\text{SM}} + \phi_{q}^{\text{NP}})}}{A_{q}^{\text{SM}} e^{2i\phi_{q}^{\text{SM}}}}$$

$$C_{\epsilon_{K}} = \frac{\text{Im}[\langle K^{0} | H_{\text{eff}}^{\text{full}} | \bar{K}^{0} \rangle]}{\text{Im}[\langle K^{0} | H_{\text{eff}}^{\text{SM}} | \bar{K}^{0} \rangle]}, \qquad C_{\Delta m_{K}} = \frac{\text{Re}[\langle K^{0} | H_{\text{eff}}^{\text{full}} | \bar{K}^{0} \rangle]}{\text{Re}[\langle K^{0} | H_{\text{eff}}^{\text{SM}} | \bar{K}^{0} \rangle]}$$
Determine ρ, η, C 's and ϕ 's using generalized UT analysis

Derive bounds on NP scale and/or couplings

Our present knowledge:

SUMMARY OF CONSTRAINTS

Parameter	Output	Parameter	Output
$C_{\Delta m_K}$	0.96 ± 0.34	C_{ε_K}	0.99 ± 0.16
C_{B_d}	0.96 ± 0.23	ϕ_{B_d}	$(-2.9\pm1.9)^\circ$
C_{B_s}	0.94 ± 0.19	ϕ_{B_s}	$(-19\pm8)^\circ\cup(-69\pm7)^\circ$
$\bar{\eta}$	0.360 ± 0.031	$\bar{ ho}$	0.177 ± 0.044
$\bar{\eta}_{SM}$	0.342 ± 0.014	$\bar{\rho}_{SM}$	0.155 ± 0.022

No deviation seen in K physics, slight offset in phase of B_d mixing, ample room for NP in phase of B_s mixing (might become solid evidence w. Tevatron & LHCb)

THE SCALE OF NP

• The constraints we obtained can be used to put lower bounds on the scale of NP models with a given flavour structure:

$$A_{\rm NP}/A_{\rm SM} \sim C/C_{\rm SM}$$
 $C_i(\Lambda) = K_i F_i \frac{L}{\Lambda^2}$

• K_i numeric coefficient of O(1), F_i flavour structure, L loop coefficient, Λ NP scale

LOWER BOUNDS ON THE NP SCALE (TeV)

Scenario	strong/tree	α_s loop	α_W loop
MFV (small $\tan \beta$)	5.5	0.5	0.2
MFV (large $\tan \beta$)	5.1	0.5	0.2
M_H in MFV at large $\tan\beta$	$5\sqrt{(a_0+a_1)(a_0+a_2)}\left(\frac{\tan\beta}{50}\right)$		
NMFV	62	6.2	2
General	24000	2400	800

To be relevant for the hierarchy problem, NP must have a highly nontrivial flavour structure!!

The final goal: CKM matrix at the %

Luca Silvestrini

Ferrara, 20/03/2009

Page 11

CAN THEORY REACH THE % GOAL?

- Extracted via isospin analysis in $B{\to}\pi\pi$ and $B{\to}\rho\rho$ and via Dalitz analysis of $B{\to}\rho\pi$
- Isospin analysis affected by discrete ambiguities
- Theoretical uncertainties due to EWP and isospin breaking, model-dependent estimates are at the level of 1-2°
- Th matches present & future exp accuracy: today 7°, LHCb 4.5°, SuperB 1-2°

Luca Silvestrini

Ferrara, 20/03/2009

- Extracted from $A_{CP}(t)$ in b \rightarrow ccs decays (discrete ambiguity solved with vectors)
- Th. error due to subleading decay amplitudes of $O(\lambda^2 P/C)$
- Model estimates give $O(10^{-3})$, data-driven gives $O(10^{-2})$ but can be improved measuring b \rightarrow ccd decays
- Th matches and follows exp accuracy

$\beta_{(s)} \text{ FROM PENGUINS}$

- Comparing $\beta_{(s)}^{\ \ peng}$ with $\beta_{(s)}^{\ \ b\to ccs}$ gives an estimate of A $_{peng}$
- Th. error due to subleading SM amplitudes
 - $O(\lambda^2 P^{GIM}/P \checkmark \lambda^2)$ in b \rightarrow sss & b \rightarrow dds
 - $O(\lambda^2 \text{ T/P > }\lambda^2)$ in $b \rightarrow uus$
 - Concentrate on pure penguins!
- Use Dalitz analyses to maximize sensitivity
- Use modes with SU(3)-related control

channels (ex. $B_s \rightarrow K^{*0} K^{*0}$)

Luca Silvestrini

Ferrara, 20/03/2009

γ

- Extracted from b→cud(s) tree decays, not affected by loop-mediated NP, theory error negligible now and in the future
- $B_s \rightarrow K^* \pi$ possible as α from $B \rightarrow \rho \pi$
- Extraction from penguin decays $B \rightarrow K\pi$, $B \rightarrow KK$ and $B \rightarrow \pi\pi$ relies on input from factorization or flavour symmetries: error difficult to estimate. More suitable to look for NP in penguins taking γ as input!

β_s

- Extracted from $B_s \rightarrow J/\psi \phi$ with angular analysis (strong phase ambiguity) or from other channels
- Theory error due to subleading decay amplitudes of O(λ^2 P/C), comparable to SM
- Difficult to improve using flavour symmetries, requires further investigation to meet LHCb accuracy.

$|V_{cb}|$

- Extracted from b \rightarrow c semileptonic decays, not affected by loop-mediated NP
- Exclusive decays: need B→D(D*) FF from LQCD. Can decrease from 4% (now, comparable to exp) to 0.5% (2015, subdominant).
- Inclusive decays: th error dominant, can decrease from 1.5% now to 1% in 2015 with higher order perturbative calculations

$|V_{ub}|$

- Extracted from b \rightarrow u semileptonic decays
- Exclusive decays: need $B \rightarrow \rho(\pi)$ FF from LQCD. Can decrease from 11% (now) to 2-3% (2015), always comparable to exp.
- Inclusive decays: th error dominant (5-10%), due to m_b, WA, shape function and higher orders. Studying q² spectrum and lowering the M_x cut leaves m_b as dominant. Ultimate reach for 2015 could be 1%.

ε_K

- Two sources of theoretical uncertainty:
 - -Hadronic $\Delta F=2$ matrix element(s) (SM:1, NP:5): $B_{K}^{UT}=0.75\pm0.07$, $B_{K}^{LAT}=0.75\pm0.07$. Can reach 1% in 2015.
 - -Contribution of Im A_0 : presently subleading, but above the 1% level. In the SM, can be extracted from ε'/ε using Im A_2 from LQCD. Beyond the SM, requires knowledge of Im A_2^{NP} .

Ferrara, 20/03/2009

$\Delta \mathbf{M}_{\mathsf{d}}, \Delta \mathbf{M}_{\mathsf{s}}$

- Within the SM only source of theoretical uncertainty is the ME:
 - $-f_{Bs}\sqrt{B_{Bs}}^{UT}=265\pm4$ MeV, $f_{Bs}\sqrt{B_{Bs}}^{LAT}=270\pm30$ MeV. Can reach 1% in 2015.
 - -ξ^{UT}=1.26±0.05, ξ^{LAT}=1.21±0.04. Can reach 0.5% in 2015.
- Beyond the SM need 4 additional matrix elements. In principle same accuracy attainable.

$$\Delta\Gamma_{\rm d}, \Delta\Gamma_{\rm s}, A_{\rm SL}^{\rm d}, A_{\rm SL}^{\rm s}$$

- Difficult situation in the SM: cancellations & higher orders ($\alpha^2 \& \alpha/m_b$). Must be careful with "guessed" improvements. Reevaluation of SM under way.
- Beyond the SM penguin effects in $A_{\rm SL}$ are enhanced. Might be relevant in 2015.

Estimates of error for 2015

©2007 V. Lubicz

SuperB

CDR

Hadronic	Current	6 TElan	60 TFlop	1-10 PFlop
matrix	lattice	Vacn	Year	Year
element	error	yeur	[2011 LHCb]	[2015 SuperB]
$f_{+}^{K\pi}(0)$	0.9%	0.7%	0.4%	< 0.1%
	(22% on 1-f ₊)	(17% on 1-f ₊)	(10% on 1-f ₊)	(2.4% on 1-f ₊)
Âκ	11%	5%	3%	1%
\mathbf{f}_{B}	14%	3.5 - 4.5%	2.5 - 4.0%	1-1.5%
$\mathbf{f}_{\mathtt{B}\mathtt{s}}\mathbf{B}_{\mathtt{B}\mathtt{s}}^{1/2}$	13%	4 - 5%	3 - 4%	1-1.5%
ξ	5%	3%	1.5 - 2 %	0.5 - 0.8 %
	(26% on ξ-1)	(18% on ξ-1)	(9-12% on ξ-1)	(3-4% on ξ-1)
$\mathcal{F}_{B \rightarrow D/D*1v}$	4%	2%	1.2%	0.5%
	(40% on 1-F)	(21% on 1-F)	(13% on 1-F)	(5% on 1-F)
$f_{+}^{ B \pi}, \ldots$	11%	5.5 - 6.5%	4 - 5%	2-3%
$T_1^{B \rightarrow K * / \rho}$	13%			3 - 4%
S.Sharpe @ Lattice QCD: Present and Future, Orsay, 2004 and report of the U.S. Lattice QCD Executive Committee				

CONCLUSIONS

- Theory already good enough: $\alpha,\,\beta,\,\gamma$
- Reasonable LQCD improvements needed to match % accuracy: exclusive semileptonic, $\Delta m_{\rm d}, \Delta m_{\rm s}$
- Improvements needed, must work really hard to reach exp accuracy:
 - OPE: inclusive semileptonic
 - Flavour symmetries and/or data-driven and/or th. breakthrough: $b \rightarrow s$ penguins, β_s , ε_k , A_{sL} , $\Delta\Gamma$