Beyond the Standard Model as of 2015

R. Barbieri LNGS, September 13–22, 2015

- I. The SM as of 2015
- II. Problems of (questions for) the SM
- III. New (revisited) ideas to address these problems
- IV. What if the hierarchy problem were a dead end?

I. The SM Lagrangian (since 1973 in its full content)

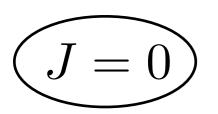
In () the approximate dates of their experimental shining (at different levels)

The synthetic nature of PP exhibited

An alternative definition of the SM

1. Gauge group $\mathcal{G} = SU(3) \times SU(2) \times U(1)$

2. Particle content (rep.s of \mathcal{G}) – See below


3. All $\mathcal{O}_i: d(\mathcal{O}_i) \leq 4$ except for $\theta F_{\mu\nu} \tilde{F}^{\mu\nu}$

(In spite of $F_{\mu\nu}\tilde{F}^{\mu\nu} = \partial_{\mu}J_{\mu}$, neutron EDM $\approx 10^{-16}\theta \ e \cdot cm$)

Particle content

and a seal					i =
	u(1968)	d(1968)	e(1897)	$\nu_e(1956)$	← 1
	c(1974)	s(1968)	$\mu(1937)$	$ u_{\mu}(1962) $	← 2
(J = 1/2)	t(1994)	b(1977)	$\tau(1975)$	$\nu_{\tau}(2000)$	← 3

$$(J=1) \quad G^{a}(1978) \quad A(1905) \quad W^{\pm}(1983) \quad Z(1983)$$

Representation content and accidental symmetries

 $\Psi = Q(3,2)_{1/6} \quad u(\bar{3},1)_{-2/3} \quad d(\bar{3},1)_{1/3} \quad L(1,2)_{-1/2} \quad e(1,1)_1$

 Ψ = next-to-simplest rep of G: chiral anomaly-free, vector-like under $SU(3) \times U(1)_{em}$ $[\Xi = (3,2)_0 \ (\bar{3},1)_{1/2} \ (\bar{3},1)_{-1/2}]$

(the key to the non-observation of any new particle so far?) (Un important hint for "algebraic" Unification?)

From $\mathcal{O}_i: d(\mathcal{O}_i) \leq 4$

 $\Rightarrow B, \ L_e, L_\mu, L_\tau$ and $U(3)^3 \equiv U(2)_Q \times U(3)_u \times U(3)_d$ only broken by Y_u, Y_d

II. Problems of (questions for) the SM

1. Unaccounted phenomena

neutrino masses Dark matter Baryon asymmetry

2. Why $\theta \lesssim 10^{-10}$ **?**

3. $\mathcal{O}_i : d(\mathcal{O}_i) \leq 4$ only?

unaccounted phenomena (?) vacuum stability Landau poles Gravity

4. Lack of calculability

the hierarchy problem the flavour paradox

vacuum stability

$$V(\varphi) = \mu^{2} |\varphi|^{2} + \lambda |\varphi|^{4} \qquad m_{W} = gv/\sqrt{2}$$

$$\frac{d\lambda}{d \log Q} = \frac{3}{2\pi^{2}} \Big[\lambda^{2} + \frac{1}{2} \lambda y_{t}^{2} - \frac{1}{4} y_{t}^{4} + \cdots \Big] \qquad m_{H} = 2\sqrt{\lambda}v$$

$$m_{t} = y_{t}v$$
With current values of $m_{H}, m_{t}, \alpha_{S}, \ldots$

$$\lambda (\approx 10^{11} \text{ GeV}) < 0$$

 \Rightarrow A second minimum of V at $\phi \gtrsim 10^{11}~GeV$ to which v should tunnel in a very long time (>> t_{Univ})

- Is there a real meta-stability at $\phi < M_{Pl}$?
- Any experimental implication?
- Connection to inflation?
- Is it a problem?

Landau poles

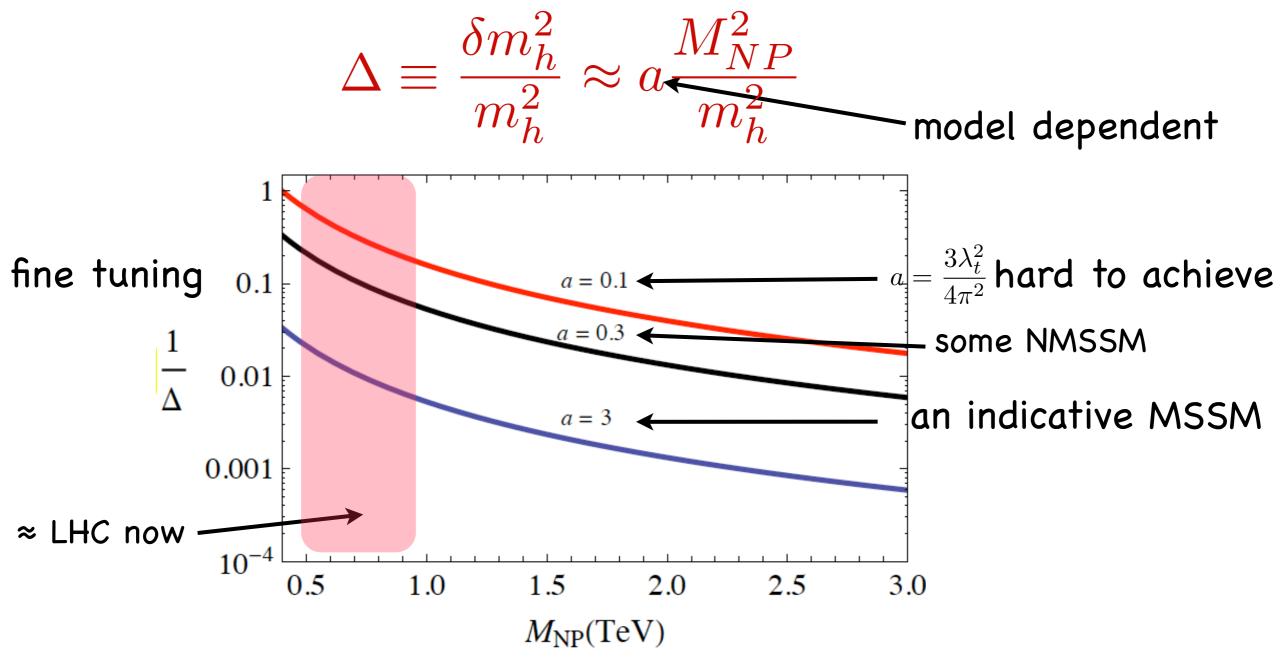
$$\frac{dg_1^2}{dt} = \frac{41}{40}g_1^4 \quad \Rightarrow \text{ a Landau pole at } \Lambda_1$$

- the problem not cured by including other couplings
- can it be cured by gravity? Yes, since $\Lambda_1 > M_{Pl}$, if gravity important at $E \lesssim M_{Pl}$
- what if gravity softened enough, so that it becomes irrelevant? (How is hard to tell, but...)
- need $SU(3) \times SU(2) \times U(1)$ fully immersed in a non-abelian group $SU(4)_{PS} \times SU(2)_L \times SU(2)_R$ $SU(3)_c \times SU(3)_L \times SU(3)_R$ which requires heavier scales than v

The hierarchy problem, once again

Can we compute the Higgs mass/vev in terms of some fundamental dynamics?

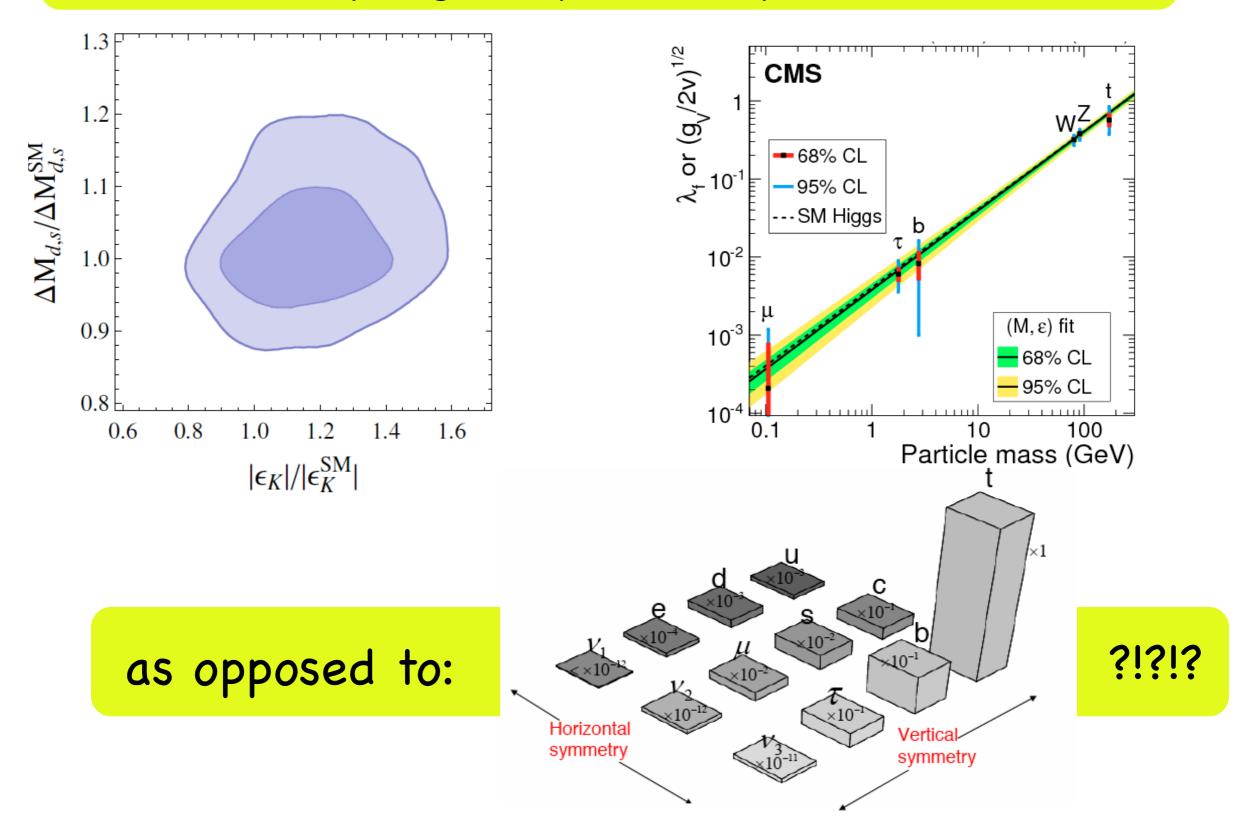
$$-\frac{t}{2} + \frac{h}{2} + \frac{x^2}{2} W, Z$$


$$\delta m_h^2 = \frac{3y_t^2}{4\pi^2} \Lambda_t^2 - \frac{9g^2}{32\pi^2} \Lambda_g^2 - \frac{3{g'}^2}{32\pi^2} \Lambda_{g'}^2 + \dots$$

 $\Lambda_t \lesssim 0.4 \sqrt{\Delta} \ TeV \quad \Lambda_g \lesssim 1.1 \sqrt{\Delta} \ TeV \quad \Lambda_{g'} \lesssim 3.7 \sqrt{\Delta} \ TeV$

⇒ Look for a top "partner" (coloured, S=0 or 1/2) with a mass not far from 1 TeV

(we have become more prudent!)

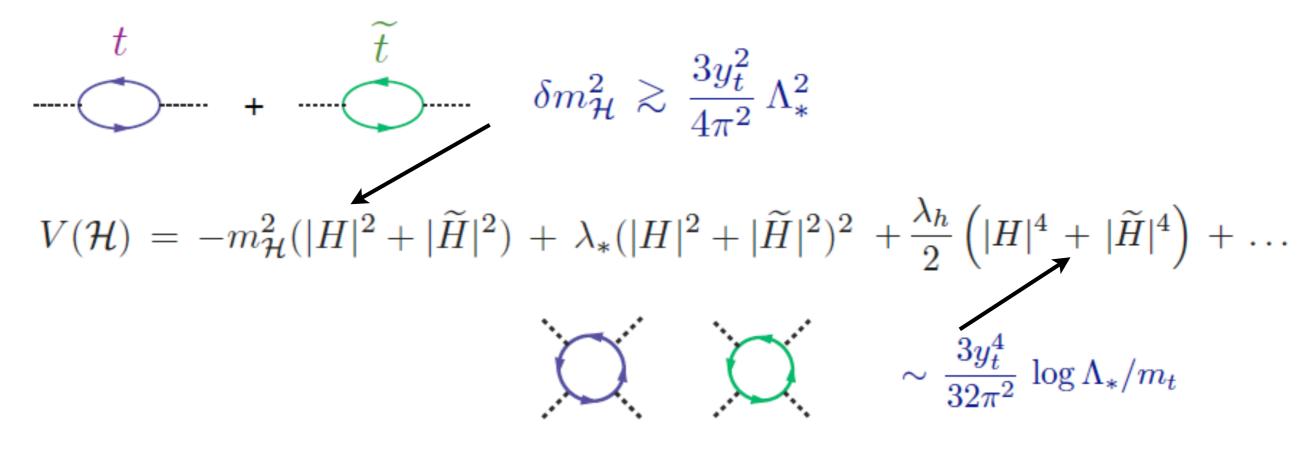

How dramatic is the "little hierarchy problem"?

- Things do not work the way they were originally thought
- Not a serious problem at a fundamental level LHC-13 TeV

The flavour paradox

Yukawa couplings: a piece of physical reality

III. New (revisited) ideas to address these problems/questions


- Neutral top "partners" (fermionic or even bosonic)
- Mirror Dark Matter
- Self-criticality of the Higgs vev
- Axion (light scalar) detection
- Putative anomalies in B-decays

Neutral top "partners" (twin Higgs)

1. "Mirror" the Higgs system ($H, \ ilde{H}$) with a Z_2 symmetry

 $V(\mathcal{H}) = -m_{\mathcal{H}}^2(|H|^2 + |\tilde{H}|^2) + \lambda_*(|H|^2 + |\tilde{H}|^2)^2 + \frac{\lambda_h}{2}\left(|H|^4 + |\tilde{H}|^4\right) + \dots$

2. "Mirror" the Higgs-top interaction $\mathcal{L}_Y = y_t Q H t + y_t \tilde{Q} \tilde{H} \tilde{t}$

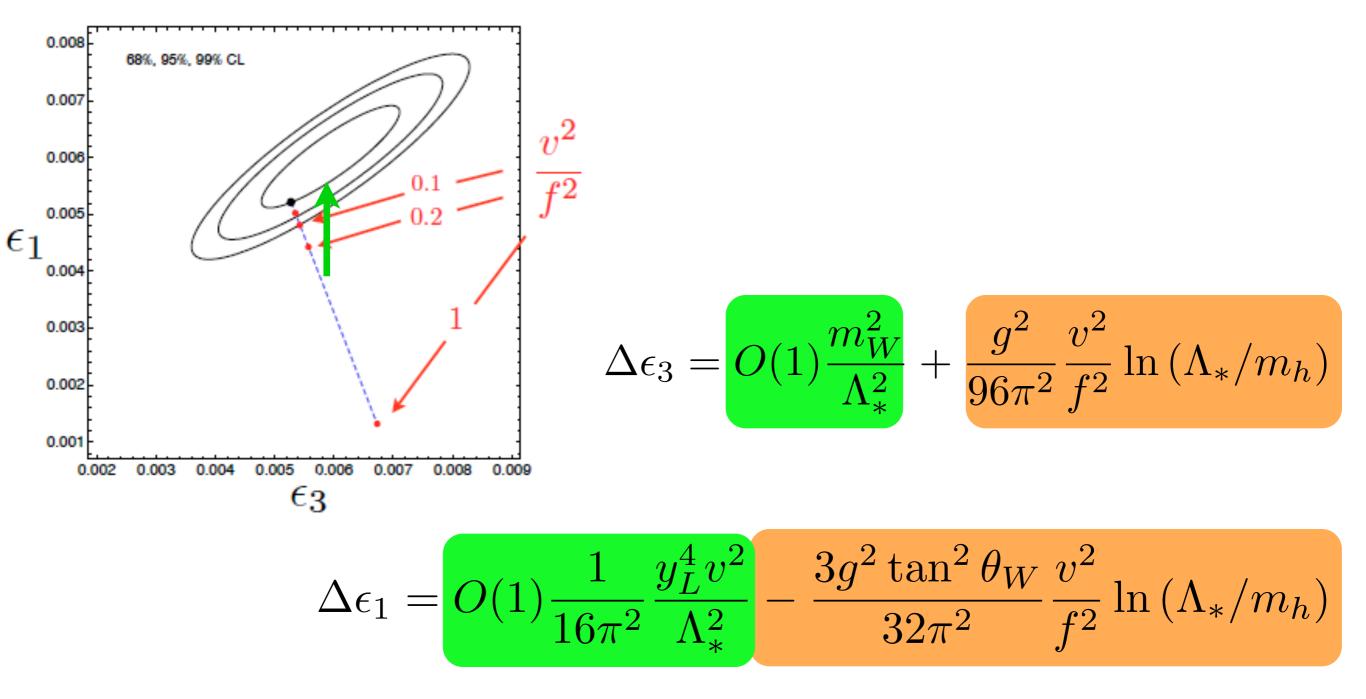
Vacuum dynamics

$$V(\mathcal{H}) = -m_{\mathcal{H}}^2(|H|^2 + |\tilde{H}|^2) + \lambda_*(|H|^2 + |\tilde{H}|^2)^2 + \frac{\lambda_h}{2}\left(|H|^4 + |\tilde{H}|^4\right) + \dots$$

$$\lambda_{h} = 0 \qquad \begin{bmatrix} SO(8) \to SO(7) & \langle \tilde{H} \rangle^{2} = \frac{m_{\mathcal{H}}^{2}}{2\lambda_{*}} \equiv f^{2} \\ 7 \text{ NG-bosons} = 6 \text{ eaten + (SM Higgs)} \end{bmatrix}$$
$$\lambda_{h} \neq 0 \qquad \begin{bmatrix} \delta m_{h}^{2} = \lambda_{h} (\delta f^{2}) = \frac{\lambda_{h}}{\lambda_{*}} \times \frac{3y_{t}^{2}}{4\pi^{2}} \times \Lambda_{*}^{2} \end{bmatrix}$$

$$\Lambda_* \lesssim \sqrt{\frac{\lambda_*}{16\pi^2}} 5\sqrt{\Delta} \ TeV$$

($1/\Delta$ = fine tuning)


Spectrum structure (partial) $\lambda_* \rightarrow g_*^2$ $\Lambda_* = g_* f$ coloured/charged particles $SO(8) \rightarrow SO(7)$ at ftop "partner" $m_{\tilde{t}} = y_{\tilde{t}}f$ SM fully neutral $\begin{array}{c|c} m_t = y_t v \\ m_h \end{array} \begin{array}{c|c} - \\ - \end{array}$ $\frac{1}{m_h} \sim \sqrt{\frac{3y_t^2}{8\pi^2} \log(\Lambda_*/m_t)} \ y_t v$ fine tuning $\frac{1}{\Delta} \approx \frac{v^2}{f^2}$ $\Lambda_* \lesssim 0.4 \frac{g_*}{y_t} \sqrt{1/\log \Lambda_*/m_t} \sqrt{\Delta} TeV$

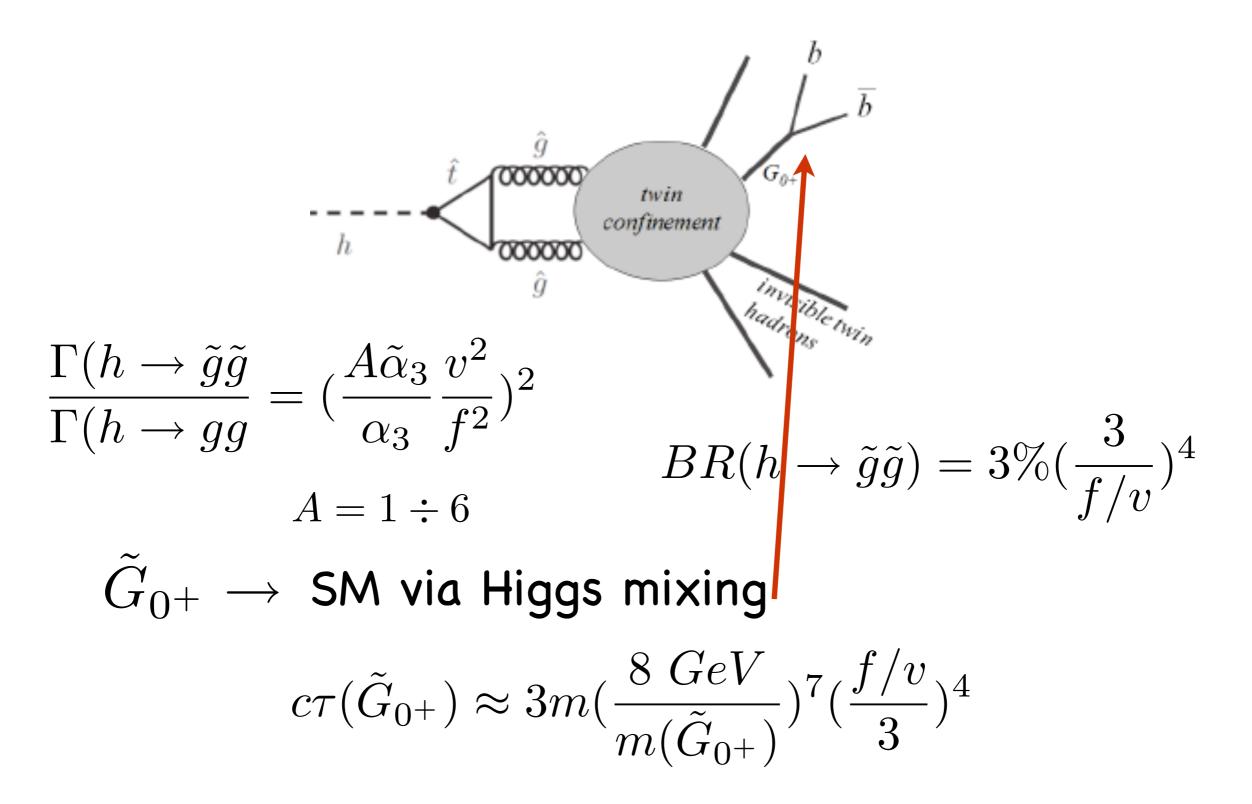
Composite Twin Higgs

 $y_L \bar{Q}_L T_R + y_R \bar{t}_R T_L + \tilde{y}_L \tilde{Q}_L \tilde{T}_R + \tilde{y}_R \bar{\tilde{t}}_L \tilde{T}_L$ top $Q_L - t_R \qquad \qquad y_t \sim \frac{y_L y_R}{g_*}$ $\mathbb{Z}_2 \longrightarrow y_L = \widetilde{y}_L \quad y_R = \widetilde{y}_R \quad \longrightarrow \quad y_t = \widetilde{y}_t$ need $g_3 \approx \tilde{g}_3$ to preserve $y_{L,R} = \tilde{y}_{L,R}$ SU(3)and 3 mirror quarks with quite free Yukawas need $g_2 \approx \tilde{g}_2$ to protect $O(g_2^2)$ corr.s to m_h^2 SU(2) $\Lambda_{q'} \lesssim 3.7 \sqrt{\Delta} ~TeV$ no real need to gauge $ilde{Y}$ $U(1)_Y$ \Rightarrow no $\tilde{\gamma}$, small Z_2 breaking needed

Phenomenological issues

1. EWPT unaltered in IR logs

2. Cosmology and mirror Dark Matter


- $\tilde{L}, \ \tilde{B}, \ \tilde{Q}$ as mirror global symmetries

- Take only mirror third generation as relevant with free Yukawas except $\tilde{y}_t = y_t$ $m_{\tilde{\tau},\tilde{b}} = y_{\tilde{\tau},\tilde{b}}f$

2 x 2 broad options

$\tilde{\eta}_{DM} = 0$	$m_{ ilde{ u}}pprox 0$		
E.g.: DM = $\tilde{\tau}$ with $\Omega_{\tilde{\tau}} = \Omega_{DM}$	need to watch DR		
for $m_{\tilde{\tau}} = 60 \div 120 \ GeV$	$\Lambda_{QCD} < T_M < \Lambda_{QCD}$		
and $f/v = 3 \div 5$	$\Delta N_{eff} = 0.075 \div 0.5$		
$\tilde{\eta}_{DM} \neq 0$	$m_{\tilde{\nu}} > 10 \div 20 \ GeV$		
E.g.: DM = $\tilde{\Delta} = (\tilde{b}\tilde{b}\tilde{b})$ with	by introducing $ ilde{ u}_R$		
$m_{\tilde{b}} < \tilde{\Lambda} = O(0.5 \div 20) GeV$			
$\Omega_{\tilde{\Delta}} - m_{\tilde{\Delta}}\eta_{\tilde{B}}$			
$\Omega_{baryon} - m_N \eta_B$			

3. LHC signatures of light mirror glueballs important parameters: $\tilde{\Lambda}_{QCD}, m_{\tilde{b}}, f$

A self-critical Higgs vev

1. A Goldstone boson
$$\phi$$
 of a U(1) broken at a scale f
2. A U(1)-breaking coupling of ϕ to H
(that keeps $\phi \rightarrow \phi + 2n\pi f$)
3. A breaking of $\phi \rightarrow \phi + 2n\pi f$ controlled by a small
mass parameter m entering the Higgs mass term
 $V = -f^2|S|^2 + |S|^4 + \rho(H)\frac{S+S^+}{f} + (\Lambda^2 - m\phi)|H|^2 + \lambda|H|^4 + m\Lambda^2\phi$
 $S = se^{-i\phi/f}$ $\Lambda = UV$ cutoff

V is a natural potential

$\begin{array}{l} \text{Minimizing } V(H,\phi) \\ V = \rho(H) \cos \phi/f + (\Lambda^2 - m\phi)|H|^2 + \lambda|H|^4 + m\Lambda^2\phi \\ \rho(H) = \underbrace{\gamma + \rho_1 \frac{H}{v_F} + \rho_2(\frac{H}{v_F})^2 + \dots}_{\text{(non trivial)}} \\ \underbrace{\frac{\partial V}{\partial h} = 0}_{\text{(hon trivial)}} \\ \end{array}$

$$\frac{\partial V}{\partial \phi} = 0 \Rightarrow h \approx v_F \frac{\Lambda^2 m f}{\rho_1}$$

 $h = v_F$ natural = moving Λ, m, f, ρ_1 by O(1) h changes by O(1)

$$m = \frac{\rho_1}{\Lambda^2 f} \lesssim \frac{v_F^4}{\Lambda^2 f}$$

$$\phi \approx \frac{\Lambda^2}{m} \gtrsim \frac{\Lambda^4 f}{v_F^4}$$

historical evolution of ϕ (and of v) (under suitable conditions: e.g. a very very long inflation period) $V(\phi)$ ϕ slow-rolls during inflation at v=0until it hits value where m_h^2 crosses zero rolling stops when barriers grow due to v > 0

experimental consequences:??

Where we stand

- I. The SM as of 2015
- II. Problems of (questions for) the SM
- III. New (revisited) ideas to address these problems
- IV. What if the hierarchy problem were a dead end?