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Grand Unified Theory (GUT)

Simplicity, minimality with respect to the Standard Model (SM)

• in SM 3 gauge couplings g1,2,3, → in GUT only 1: gGUT

• in SM 5 representations Q, L, uc, dc, ec → in GUT ≤ 2

(Q, uc, ec) = 10 ; (dc, L) = 5̄ in SU(5)

(Q, uc, ec, dc, L, νc) = 16 in SO(10)

(Q, uc, ec, dc, L, νc, d′, L′c, d′c, L′, s) = 27 in E6

• in SM 4 Yukawas YU,D,E,N → in GUT typically only 2 →
predictions

LNGS, Assergi, ’15 2



Borut Bajc

• the GUT gauge structure explains electric charge quantization

5̄ = (dc1, d
c
2, d

c
3, ν, e)→ 3qdc + qν + qe = 0→ qdc = −qe/3

→ existence of magnetic monopoles predicted

• GUTs are theories of proton decay:

L =
cijkl
Λ2

qiqjqkll

in SM cijkl,Λ arbitrary

in GUTs Λ = MGUT and cijkl predicted (model dependent)
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But what does it mean g1,2,3 → g5 (g1 6= g2 6= g3)? What if we run

gi, do they unify at some scale? Not completely:
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New states needed. If you put MSSM at ≈ 1 TeV: unification at

MGUT ≈ 1016 GeV
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Not unique solution, but enough to motivate supersymmetry
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The simplest theory: SU(5)

matter: 3× (5̄F + 10F )

Higgs: 24H + 5H + 5̄H

WY = 10F 5̄F 5̄H + 10F 10F 5H

WH = 243
H + 242

H + 5̄H5H + 24H 5̄H5H

WRPV = 10F 5̄F 5̄F + 5̄F 5H + 24H 5̄F 5H

Several good features (mentioned above) but it suffers from:

• neutrino massless (as in SM)

• why at least some RPV couplings very small?

R-parity φF → −φF , φH → φH must be imposed
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More promising theories: SO(10), E6

Contain right-handed neutrino → see-saw mechanism automatic

R-parity:

R = (−1)3(B−L)+2S

SO(10):

R(〈16〉 ≡ ν̃R) = 1

R(〈126〉) = 2

This means that if no 16 gets a vev → R-parity exact

In E6 all you need is to give vevs only to components that in the

SO(10) decomposition do not belong to 16, 144, etc
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But 126 (and e.g. 351′ ⊃ 126 in E6) is a large representation:

T (126) = 35

so that the corresponding beta function is

βSO(10) = 3× C(G)︸ ︷︷ ︸
=8

−
∑
R

T (R) < 0

becomes negative (and large)

In minimal renormalizable supersymmetric models

βSO(10) = −109

βE6
= −159
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d

d log (µ/Λ)

(
1

α

)
=

1

4π
β =

1

4π

(
b(1) + . . .

)
At 1-loop the solution is

1

α(µ)
=
b(1)

4π
logµ/Λ

• α(Λ) =∞

• α(µ) defined for µ < Λ because b(1) < 0

• such UV singularity at Λ is called the Landau pole

• in our case the Landau pole is already 1 order of magnitude (or

less) above the GUT scale
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Can we resolve this singularity with a non-trivial UV fixed point?

Add the 2-loop contribution

β = −Nb(1) +N2b(2) α

4π
= 0

(N =number of d.o.f. in the loop = O(102 − 103)) at

N
α

4π
=
b(1)

b(2) ∼< 1

then the theory could be perturbative, i.e. the 3-loop contribution

N3b(3)
( α

4π

)2

and higher terms could be neglected. This possible only if b(1)

strangely (parametrically) small (Banks-Zaks).
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This is not our case here. There is no parametric cancellation in

b(1).

So even if our theory has a meaning and develops a UV

asymptotically free fixed point, it will not be controlled by

perturbation.
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At this point interesting to mention that only recently an explicit

non-trivial example of an asymptotically non-free theory with

perturbatively controlled UV fixed point has been found.

It is based on the interplay of all 3 different couplings (gauge,

Yukawa and Higgs).

Such a situation has been proved not to be possible in a similar

simple way in susy.

LNGS, Assergi, ’15 12



Borut Bajc

On the other side problem of the Landau pole is essentially

supersymmetric.

In non-susy β function typically much smaller

f → 2/3

b → 1/3 or 1/6

less representations, 126 + 126 → 126 only

Typically in non-susy theories the Landau pole, if it exists, it is

above MPlanck
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Analytic perturbation theory

Hystorically there were some attempts to attack the Landau

problem (Redmond,. . . , Bogolyubov, . . . , Shirkov, . . . )

Easier to start actually with QCD:

α(Q2) =
1

β log (Q2/Λ2)

Landau pole at Q2 = Λ2: non-analytic → violates causality

Need to force α to be analytic
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αan(Q2) =
1

π

∫ ∞
0

dz
Im[α(−z − iε′)]
z +Q2 − iε

=
1

β

(
1

log (Q2/Λ2)
+

Λ2

Λ2 −Q2

)
• No poles, only a branch cut for real negative Q2.

• Corrections non-perturbative:

Λ2

Q2
= e−

1
αβ

• For large Q2 →∞ perturbative result recovered.
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For β < 0 this not applicable → subtracted dispersion relation

Assuming that the β function is constant for all energies from zero

to infinity:

αan(Q2)− αan(µ2) = −
∫ ∞

0

((Q2 − µ2)/β) dz

(z +Q2)(z + µ2) [(log (z/Λ2))2 + π2]

=
1

β

(
1

log (Q2/Λ2)
+

Λ2

Λ2 −Q2

)
− 1

β

(
1

log (µ2/Λ2)
+

Λ2

Λ2 − µ2

)
If β > 0 we can put µ→∞, where α(∞) = 0 and recover previous

unsubtracted result.
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Can this help in our problem? We have here some thresholds, so Λ

and β depend on the energy.

z < M2
GUT :

Λi = MZ exp

(
− 1

2βiαi(MZ)

)
βi = (−33/5,−1, 3)

αi(MZ) = (0.01696, 0.03344, 0.10830)

z > M2
GUT :

ΛGUT = MGUT exp

(
− 1

2βGUTαi(MGUT )

)
βGUT = −159

αi(MGUT ) = 1/25
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So the theory stays perturbative.

But it is hard to say if this has anything to do with reality. Hard to

check if the proposal is reliable.

To mention however that some check have been done.

Example, comparing large N expansion and analytic perturbation

theory in d = 2 O(N) Gross-Neveu model: surprising agreement
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Dualities

Remember that in QCD we have a similar problem, although in the

IR.

Here the electric theory (QCD) becomes strong at low ΛQCD ∼< 1

TeV and is defined perturbatively only for E � ΛQCD.

In the IR we have a weakly interacting (non-gauge) theory of

mesons (magnetic theory): χPT

The two theories are believed to be equivalent, but they describe

physics in the opposite regimes.

Can we have something of this kind in our GUT examples?
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This is very difficult to do in ordinary theories, but in

supersymmetric we have holomorphy of the superpotentiual W

which helps us.

Two theories will be dual if

1) they have the same moduli space. This is described by all 〈φi〉
which satisfy the e.o.m. This is typically a continuous family of

solutions. This means also coincidence of all special (singular)

points with enhanced symmetry

2) same number of massless d.o.f. at all points in moduli space.

Heavy guys do not count, we should integrate them out. Duality is

here only in deep IR.

3) Start typically at W = 0 or with just few terms. This brings a

large amount of global symmetries which help. At the end we can

add δW as small perturbations.

4) ’t Hooft anomaly matching for unbroken global symmetries
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Seiberg dualities

Simplest example: SQCD

Electric theory:

SU(Nc)

Nf quarks Q

Nf antiquarks Q̄

The beta function is

βSU(Nc) = 3×Nc − 2Nf ×
1

2

To have a UV free theory → Nf < 3Nc
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Symmetries of the electric (W = 0):

[SU(Nc)]local ×
[
SU(Nf )Q × SU(Nf )Q̄ × U(1)× U(1)R

]
global

Q ∼ (Nc, Nf , 1)

(
1,
Nf −Nc
Nf

)
Q̄ ∼

(
N̄c, 1, N̄f

)(
−1,

Nf −Nc
Nf

)
Mesons:

Mij = Q̄iQj i, j = 1, . . . Nf

Baryons:

Bj1,...,jNc = εi1...iNcQ
i1
j1
. . . Q

iNc
jNc

i1, . . . iNc = 1, . . . Nc

B̄j1,...,jNc = εi1...iNc Q̄
i1
j1
. . . Q̄

iNc
jNc

j1, . . . jNc = 1, . . . Nf
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Magnetic theory:

SU(Nf −Nc)

Nf quarks q

Nf antiquarks q̄

N2
f singlets T

The beta function is

βSU(Nf−Nc) = 3× (Nf −Nc)− 2×Nf ×
1

2

To have a UV free theory → Nf > 3Nc/2
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Symmetries of the magnetic (W ∼ T q̄q):

[SU(Nf −Nc)]local × [SU(Nf )q × SU(Nf )q̄ × U(1)× U(1)R]global

q ∼
(
Nf −Nc, N̄f , 1

)( Nc
Nf −Nc

,
Nc
Nf

)
q̄ ∼

(
Nf −Nc, 1, Nf

)(
− Nc
Nf −Nc

,
Nc
Nf

)
T ∼

(
1, Nf , N̄f

)(
0, 2

Nf −Nc
Nf

)
Mesons:

mij = q̄iqj i, j = 1, . . . Nf

Baryons:

bj1,...,jNc = εi1...iNcQ
i1
j1
. . . Q

iNc
jNc

i1, . . . iNc = 1, . . . Nc

b̄j1,...,jNc = εi1...iNc Q̄
i1
j1
. . . Q̄

iNc
jNc

j1, . . . jNc = 1, . . . Nf
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Why are these two theories believed to be dual?

• same composites

• ’t Hooft anomaly matching (global)3

• the identity survive under different deformations (moving along

the flat directions, adding mass terms)
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A SO(10) example

Imagine we have

N10 copies of 10’s

3 copies of 16’s

The beta function is

βSO(10) = 3× 8−N10 × 1− 3× 2 = 18−N10

For N10 > 18 the theory has a Landau pole in the UV. This is the

magnetic theory, well behaved in the IR. We look for a dual theory,

well defined (asymptotically free) in the UV.
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The magnetic theory has the following symmetries:

[SO(10)]local × [SU(N10)× SU(3)× U(1)× U(1)R]global

10 = Q ∼ (10, N10, 1)(−6,
N10 − 2

N10 + 6
)

16 = Ψ ∼ (16, 1, 3)(N10,
N10 − 2

N10 + 6
)

Parton DOF = 10N10 + 48
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Gauge invariants (composites):

164 ∼ (1, 1, 6̄)(4N10, 4
N10 − 2

N10 + 6
)

102 ∼ (1,
N10(N10 + 1)

2
, 1)(−12, 2

N10 − 2

N10 + 6
)

16210 ∼ (1, N10, 6)(2N10 − 6, 3
N10 − 2

N10 + 6
)

162103 ∼ (1,

N10

3

 , 3̄)(2N10 − 18, 5
N10 − 2

N10 + 6
)

164104 ∼ (1,

N10

4

 , 6̄)(4N10 − 24, 8
N10 − 2

N10 + 6
)

162105 ∼ (1,

N10

5

 , 6)(2N10 − 30, 7
N10 − 2

N10 + 6
)
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Hadron DOF = 1
20

(
N5

10 − 5N4
10 + 15N3

10 − 15N2
10 + 144N10 + 120

)
The DOF must match:

Parton DOF = Goldstones + Hadron DOF− constraints

Example for N10 = 20:

248 = 45 + 125850− 125647

Constraints come from e.o.m.:

∂W

∂φi
= 0

W = W (164, 102, 16210, 162103, 164104, 162105)
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The electric dual:

[SU(N10 − 1)× Sp(4)]local×[SU(N10)× SU(2)× U(1)× U(1)R]global

Parton DOF:

q ∼ (N10 − 1, 1, N̄10, 1)

q′ ∼ (N10 − 1, 4, 1, 2)

q̄ ∼ (N10 − 1, 1, 1, 5)

s ∼ (
(N10 − 1)N10

2
, 1, 1, 1)

t ∼ (1, 4, 1, 4)

m ∼ (1, 1,
N10(N10 + 1)

2
, 1)

n ∼ (1, 1, N10, 5)
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Checks:

• in both theories all local or mixed local-global anomalies vanish

• global anomalies satisfy ’t Hooft anomaly matching

• reproduction of known results in various limits

• mass deformations

• . . .
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We need also to use an adjoint to eventually break SO(10). If we

add a 45 it is tough to find the dual

→ deconfinement mechanism

Add extra gauge Sp(6) and Z = (10, 6) under SO(10)×Sp(6)

ZαµJαβZ
β
ν = (10× 10)AS = 45µν , Jαβ = −Jβα

Any Sp(2N) with 2N + 4 fundamentals confine at the IR scale ΛSp.

Then Z becomes composite 45 of SO(10).

Adding a nontrivial superpotential for Z (perturbation) does the

rest:

SO(10)
〈45〉−−→ SM × U(1)
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Superconformal index

Progress done recently in checking whether two theories dual. One

can compare the superconformal index. This is a (calculable finite)

generalization of Witten’s index. It automatically includes ’t Hooft

anomaly matching, but more than just it.
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It uses infinite products like

(x; p)∞ =
∞∏
j=0

(1− xpj)

Γ(z; p, q) =

∞∏
j,k=0

1− z−1pj+1qk+1

1− zpjqk

Γ(z1, z2; p, q) = Γ(z1; p, q)Γ(z2; p, q)

• We have global symmetries SU(Nf )× SU(Nf ) both in electric

and magnetic theory. So there are charges associated with

generators of the Cartan subalgebra. Introduce the

corresponding chemical potentials si and ti.

• Introduce regulators p and q for the ∞ number of ground

states (flat directions).

• Index depends on q, p, si, ti
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For the SQCD Seiberg duality we have

IE =
(p; p)Nc−1

∞ (q; q)Nc−1
∞

Nc!

×
∮
|zj |=1

∏Nf
i=1

∏Nc
j=1 Γ(sizj , t

−1
i z−1

j ; p, q)∏
1≤i<j≤Nc Γ(ziz

−1
j , z−1

i zj ; p, q)

Nc−1∏
j=1

dzj
2πizj

IM =
(p; p)Ñc−1

∞ (q; q)Ñc−1
∞

Ñc!

∏
1≤i,j≤Nf

Γ(sit
−1
j ; p, q)

×
∮
|zj |=1

∏Nf
i=1

∏Ñc
j=1 Γ(S

1
Ñc s−1

i zj , T
− 1
Ñc tiz

−1
j ; p, q)∏

1≤i<j≤Ñc Γ(ziz
−1
j , z−1

i zj ; p, q)

Ñc−1∏
j=1

dzj
2πizj

where

Ñc = Nf −Nc , S =
∏Nf
i=1 si , T =

∏Nf
i=1 ti , ST

−1 = (pq)−Ñc
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Duality means that IE = IM for any choice of si, ti, p, q.

This has indeed been proved.

Not only for Seiberg SQCD, but for many other conjectured

nontrivial dualities.
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Limitations

But even if we find the electric dual of a realistic GUT, we still

have the obvious problem, present already in QCD:

we have a magnetic theory defined in the IR and an electric theory

defined in the UV, but we do not have any region in between in

which both theories are perturbative.

This sort of obvious: two different gauge theories cannot be

equivalent and perturbative.

So there is no simple way to match the measured parameters of the

magnetic (IR) theory with the non-measured parameters of the

electric (UV) theory. This should be eventually done

non-perturbatively (lattice).
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Conclusions
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Backup slides
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The rate for nucleon decay in low-energy susy models is typically

dominated by d = 5 operators (schematically)

τ−1 ≈

∣∣∣∣∣
(
Y 2

MC

)(
α

4π

mλ

m2
f̃

)∣∣∣∣∣
2

m5
p

Y 2 . . . products of Yukawas

MC . . . color triplet mass

(α . . .) MSSM loop factor (λ gaugino or higgsino, f̃ sfermion)

m5
p . . . from strong QCD dynamics (lattice)

The lifetime depends a lot on the model considered

But for msusy ∼ 1 TeV this typically a problem.
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Renormalizable sugra SU(5)

(3× (10F + 5f ) + 5H + 5H + 24H + 24V ):

- Y 2 = YUYD(= YUYE)

- MC ≈ 1014−15 GeV from RGE constraints

- sfermion mixing ∝ fermion mixing

+ LHC-friendly values for soft parameters

- mλ ≈ mf̃ ∼< O(TeV)

τ ≈ 1029 years

Too fast: τexp(p→ K+ν̄) ∼> 1033 yrs
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Many different ways of solving this problems (larger msusy,

non-renormalizable operators, particular flavor structure, etc)

But large threshold corrections (many fields in the loop) suggest

another solution

ZH = O(10−3)

YSO(10) = Z
1/2
H︸︷︷︸

small

× YSM︸︷︷︸
measured

→ small

τd=5 ∝
M2
Cm

2
susy

Y 2
SO(10)m

5
p

→ large enough

This however tells us that perturbation may be lost
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