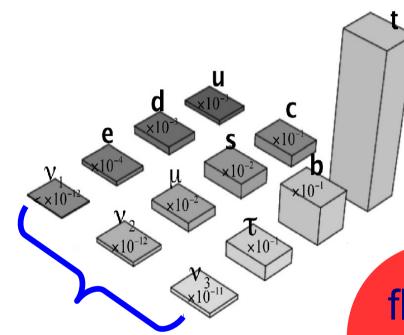
Theories relating baryon asymmetry and dark matter

In collaboration with S.Boucenna, 1310.1904 published in Frontiers

Stefano Morisi University of Würzburg

Torino 17th Dicember, 2013



Three major unsolved puzzeles In HEP & COSMO

The flavor problem

The origin and nature of dark matter (DM)

The origin of the baryon asymmetry of the universe (BAU)

* why fermion mass hierarchies?

flavor problem $V_{lep} \approx \begin{pmatrix} 0.81 & 0.56 & 0.16 \\ 0.45 & 0.44 & 0.77 \\ 0.36 & 0.70 & 0.61 \end{pmatrix}$

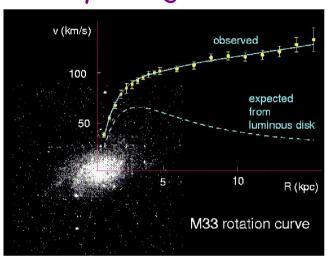
* why lep mixing?

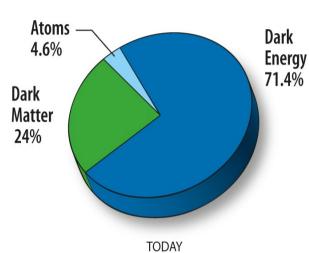
- is CP violated?

* why so different?

$V_{CKM} \approx \begin{pmatrix} 0.974 & 0.225 & 0.003 \\ 0.225 & 0.973 & 0.041 \\ 0.008 & 0.040 & 0.999 \end{pmatrix}$

* why 3 families?

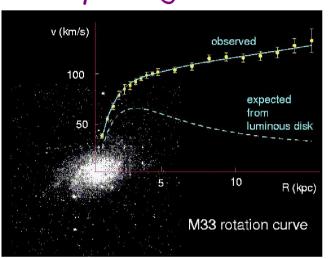

* why quark mixing?

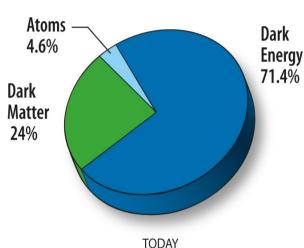

nu mass origin?

- Dirac or Majorana?
- nu absolute scale?
- normal or inverse?
- sterile nu?

Evidence for Dark Matter

Rotational curves of spiral galaxies




Bullet cluster

Evidence for Dark Matter

Rotational curves of spiral galaxies

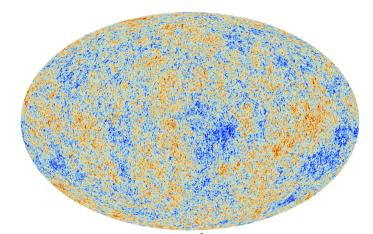
Bullet cluster

Dark Matter Candidates

- stable or very long lived
- electric neutral
- colorless
 - production mechanism?
 - cold or warm?
 - scalar, fermion, vector,…?
 - mass scale?
 - one or many candidates?
 - MOND?

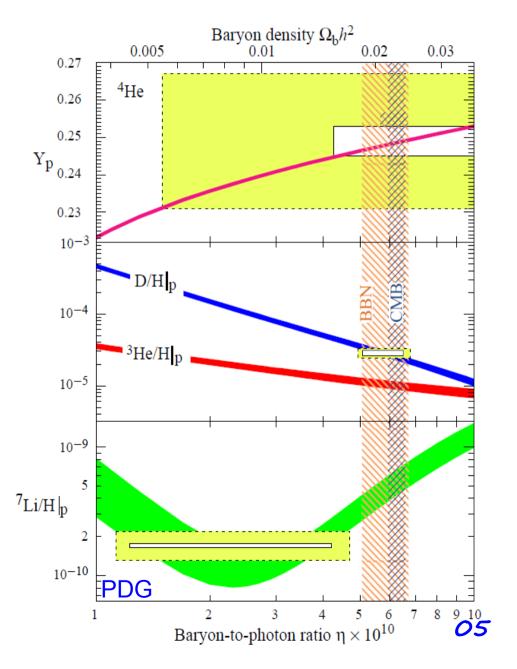
Some DM candidates:

- axions
- sterile neutrino
- asymmetric DM
- WIMPs: inert scalar neutralino,.....
- superheavy

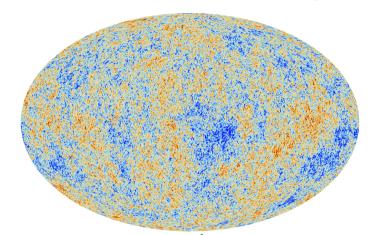

Evidence for baryon asymmetry

- antimatter is rare on earth (only accellerators FermiLab, CERN,..)
- antimatter is rare in the solar system
- cosmic rays are almost matter rather than antimatter (< 0.01%):
 no antimatter from our galaxy and distant galaxies
- no antimatter in cluster of galaxies

If there is a significant amount of antimatter in the Universe it must be segregated from matter


Evidence for baryon asymmetry

Cosmic Microwave Background rad


Planck Collaboration 1303.5076 $\Omega_{\rm b}h^2=0.02205\pm0.00028$

Big-Bang Nucleosynthesis

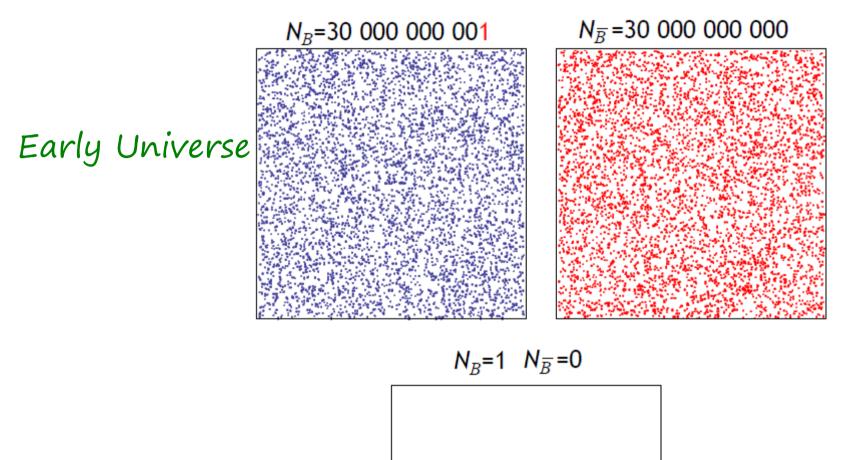
Evidence for baryon asymmetry

Cosmic Microwave Background rad

Planck Collaboration 1303.5076 $\Omega_{\rm b}h^2 = 0.02205 \pm 0.00028$

$$\frac{n_b}{s} \simeq (3.81 \times 10^{-9}) \,\Omega_b h^2 \simeq 8 \times 10^{-11}$$

baryon-symmetric Universe


$$\frac{n_b}{s} \simeq 10^{-22}$$

" annihilation catastrophe"

Early Universe baryon/anti-baryons asymmetry

$$\frac{n_b - \bar{n}_b}{n_b} \simeq 3 \times 10^{-8}$$

tiny b-antib asymmetry at early time

from Ibarra'stalk

Now

baryon asymmetry

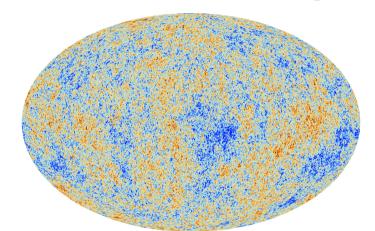
Sakharov conditions

Sakharov JETP Lett6 (67')

- (1) B violation
- (2) C & CP violation
- (3) departure from thermal equil

Some mechanisms:

- GUT baryogenesis
- electroweak baryogenesis
- leptogenesis
- Dirac leptogenesis
- Affleck-Dine
-

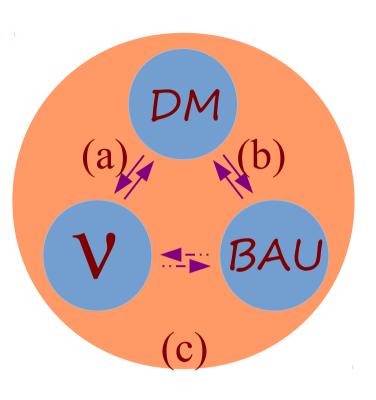

$$N_1$$
 + N_1 + N_1 N_1 + N_1 N_1

Sphaleron: **B+L** not conserved **B-L** conserved

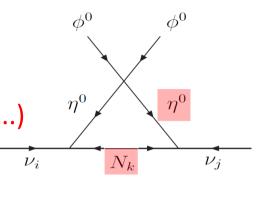
$$\Gamma_N > \mathcal{H}$$

Baryon/DM relic abundance

Cosmic Microwave Background rad

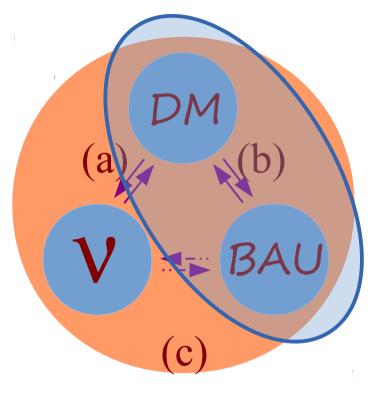


Planck Collaboration 1303.5076

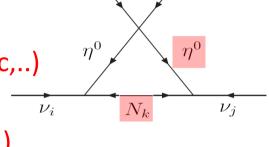

$$\Omega_{\rm b}h^2 = 0.02205 \pm 0.00028$$
 $\Omega_{\rm c}h^2 = 0.1199 \pm 0.0027$
 $\longrightarrow \Omega_{DM} \simeq 5 \Omega_{B}$

Is it a numerical coincidence?

DM, BAU & neutrino

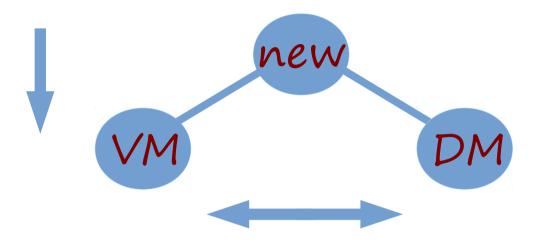


- (a) origin of neutrino mass and DM
 - sterile neutrino
 - radiative nu-mass mech. (scotogenic,..)
 - stability of DM from fla-sy ν_i (A4 –> Z2 ,...)



- (b) origin of DM and BAU
 - DM/B densities coincidence
 - non-thermal DM-BAU production
- (c) unified picture for DM, BAU and neutrino
 - neutrino Minimal SM (nMSM) Asaka, Blanchet, Shaposhnikov
 - Dirac neutrino, inflation, baryogenesis and DM with a complex scalar
 - non-thermal production and origin of neutrino mass

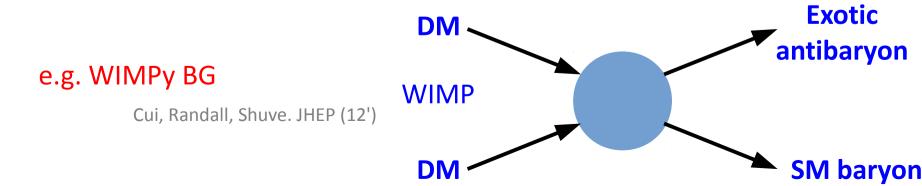
In this talk


- (a) origin of neutrino mass and DM
 - sterile neutrino
 - radiative nu-mass mech. (scotogenic,..)
 - stability of DM from fla-sy ν_i (A4 –> Z2 ,...)

- (b) origin of DM and BAU
 - DM/B densities coincidence
 - non-thermal DM-BAU production
- (c) unified picture for DM, BAU and neutrino
 - neutrino Minimal SM (nMSM) Asaka, Blanchet, Shaposhnikov
 - Dirac neutrino, inflation, baryogenesis and DM with a complex scalar
 - non-thermal production and origin of neutrino mass

Possible approaches

(1) new sector connecting DM and visible matter (VM)

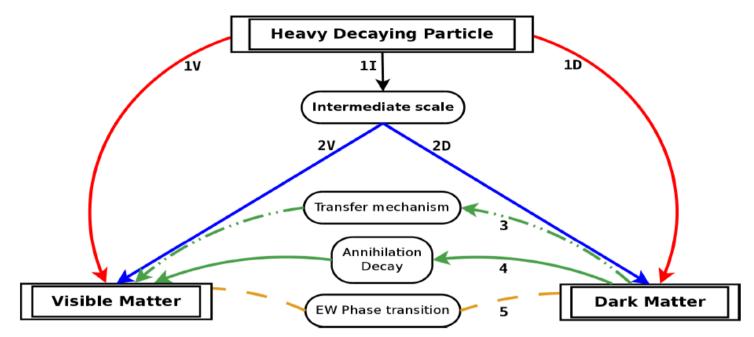

e.g. Asymmetric DM

S. Nussinov, PLB165 (85') Petraki, Volkas 1305.4939 Zurek 1308.0338

(2) DM sector as an auxiliary to a successful BaryoGenesis (BG) e.g. Electroweak BG

Profumo, Ramsey-Musolf, Shaughnessy Barger, Paul Langacker, Mathew McCaskey Ahriche, Nasri; Chowdhury Nemevsek,....

(3) WIMP paradigm as a framework to relate the abundances

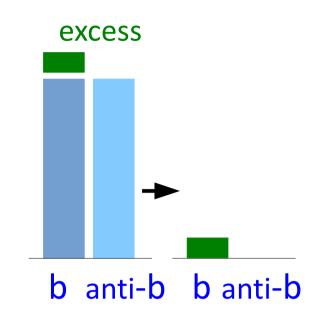


11

Theories relating baryon asymmetry and dark matter Mini review

arxiv: 1310.1904 published in Frontiers

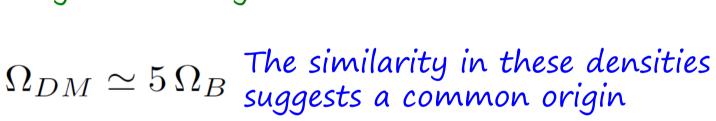
 ${\rm S.M.Boucenna}^{a1}$ and ${\rm S.Morisi}^{b2}$

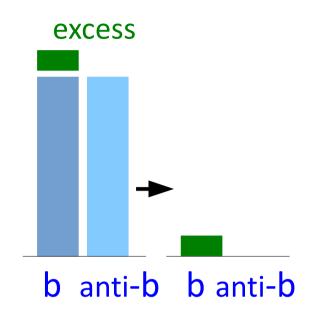


Model	DM	HS	BAU	$\mathcal{O}(M_{DM})$	Signal	Diagram
Two singlets EWBG[9]	WIMP	×	EWPHT	2-225 GeV	DD-ID-CO	5*
EW cogenesis [53]	WIMP	×	EWPHT	GeV-TeV	CO	5*
WIMPy L ^(†) [15]	WIMP	×	ANNIH	${ m TeV}$	ID-CO	T-4*
WIMPy $Q^{(\dagger)}[15]$	WIMP	×	ANNIH	$500 { m GeV}$	DD-ID-CO	T-4*
Meta-stable WIMP[19]	WIMP	×	DECAY	GeV-TeV	CO	T-4*
Kitano-Low [26]	$\mathcal{A}\mathcal{D}\mathcal{M}$	•‡•	DECAY	${ m GeV}$	CO	$1_V^* - 1_I^* - T - 2_D$
Hylogenesis [42]	$\mathcal{A}\mathcal{D}\mathcal{M}$	/	DECAY	5 GeV	IND-DD	$1_{V}^{*}-1_{D}^{*}-T$
ADM Leptog [43]	$\mathcal{A}\mathcal{D}\mathcal{M}$	/	DECAY	${ m KeV}{ m -}10{ m TeV}$	DD-ID	$1_{V}^{*} - 1_{D}^{*} - T$
Darkogenesis [49]	$\mathcal{A}\mathcal{D}\mathcal{M}$	/	TRANS	$5-15~{ m GeV}$	GW	*-3-*
Baryogenesis from DM [46]	ADM	/	TRANS	3 GeV	DD-CO	1_D*-3-*
Aidnogenesis [48]	$\mathcal{A}\mathcal{D}\mathcal{M}$	/	DECAY	6 GeV	DD-FCNC -CO	$1_{V}^{*} - \overline{3} - * - T$
Xogenesis [49]	$\mathcal{A}\mathcal{D}\mathcal{M}$	/	TRANS	$100 { m GeV-TeV}$	CO	*-3-*
Pangenesis [38]	$\mathcal{A}\mathcal{D}\mathcal{M}$	/	AFDIN	$1.6-5~\mathrm{GeV}$	DD-CO	$*-1_I^*-T-2_V-2_D$
Cladogenesis [51]	$\mathcal{N}\mathcal{T}\mathcal{D}\mathcal{M}$	*	DECAY	$5\text{-}500 \mathrm{GeV}$	-	$1_I - 1_D - 2_V^* 12$

Asymmetric DM (ADM) - basic idea

The present-day density of VM is due to BAU $\eta(B) \equiv \frac{n_b - \bar{n}_b}{s} \simeq 10^{-10}$


The baryon number today constitutes the excess remaining after all the baryon-antibaryon annihilate



Asymmetric DM (ADM) - basic idea

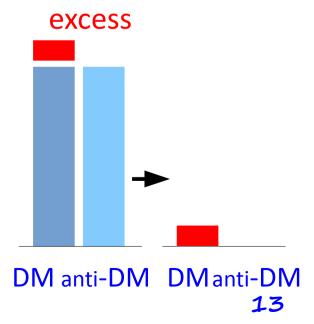
The present-day density of VM has due to BAU $\eta(B) \equiv \frac{n_b - \bar{n}_b}{s} \simeq 10^{-10}$

The today baryon number constitutes the excess the excess remaining after all the baryon-antibaryon annihilate

Asymmetric DM (ADM) - basic idea

The present-day density $\eta(B) \equiv \frac{n_b - \bar{n}_b}{s} \simeq 10^{-10}$ of VM has due to BAU

The today baryon number constitutes the excess the excess remaining after all the baryon-antibaryon annihilate


 $\Omega_{DM} \simeq 5\,\Omega_B$ The similarity in these densities suggests a common origin

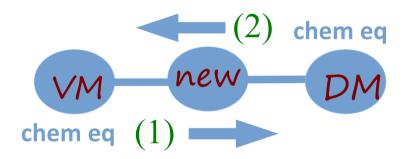
ADM hypotesis:

the DM density is due to DM particle/antiparticle asymmetry

$$\eta(DM) \equiv \frac{n_{DM} - \bar{n}_{DM}}{s}$$

$$\eta(B) \sim \frac{\eta(DM)}{m_{DM}} \sim \frac{\Omega_{DM}}{\Omega_B} m_p$$

Asymmetric DM - basic idea

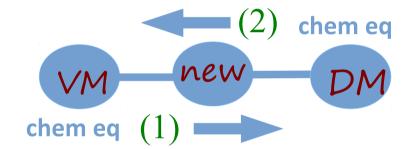

DM may be a stable component of some gauge group GD (hidden sector)

 $GV \times GD$ where GV contains the SM

BV BD Visible Baryon number & Dark Baryon number


- (1) BV is broken and BD is not broken
- (2) BD is broken and BV is not broken

Asymmetric DM - basic idea


DM may be a stable component of some gauge group GD (hidden sector)

 $GV \times GD$ where GV contains the SM

BV BD Visible Baryon number & Dark Baryon number

(1) BV is broken and BD is not broken

- (2) BD is broken and BV is not broken
- (3) BV and BD are broken

the initial asym. could be very different – some interaction is needed To drive the two asymmetries to equilibration –> i.e. mirror DM

- (4) a combination of BV-BD is conserved and BV+BD is broken
 - the asymmetries in Visible and Dark sectors are <u>equal</u>

Hylogenesis (matter-creation: an ADM example)

Davoudiasl, Morrissey, Sigurdson PRL (10')

Hidden Sector

$$X_1$$
 X_2 Dirac fermions (TeV) B=+1

Dirac fermions (GeV) B=y

Complex scalar(GeV) B=-(1+y)

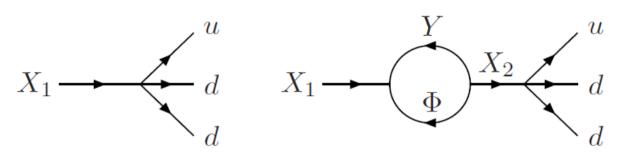
$$-\mathcal{L} \supset rac{\lambda_a}{M^2} X_{L_a} U^c D^c D^c + \zeta_a^* X_a Y \Phi$$
Neutron Portal Dark sector

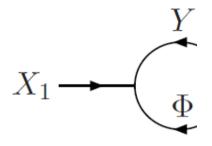
Hylogenesis (matter-creation: an ADM example)

Hidden Sector

$$X_1$$
 X_2 Dirac fermions (TeV) B=+1

Y


Dirac fermions (GeV) B=y


 ϕ

Complex scalar(GeV) B=-(1+y)

$$-\mathcal{L} \supset rac{\lambda_a}{M^2} X_{L_a} U^c D^c D^c + \zeta_a^* X_a Y \Phi$$
Neutron Portal Dark sector

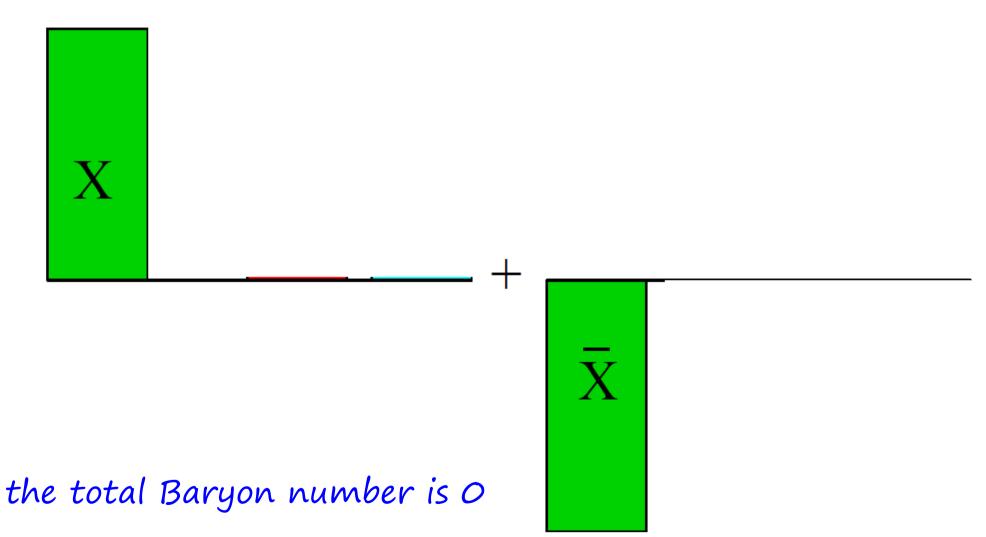
- (1) $X_1 \overline{X_1}$ non-thermally produced (inflaton decay,...)
- (2) $X_1 \overline{X_1}$ decay with CP violation in the V and D sectors
- (3) the symmetric components annihilate away

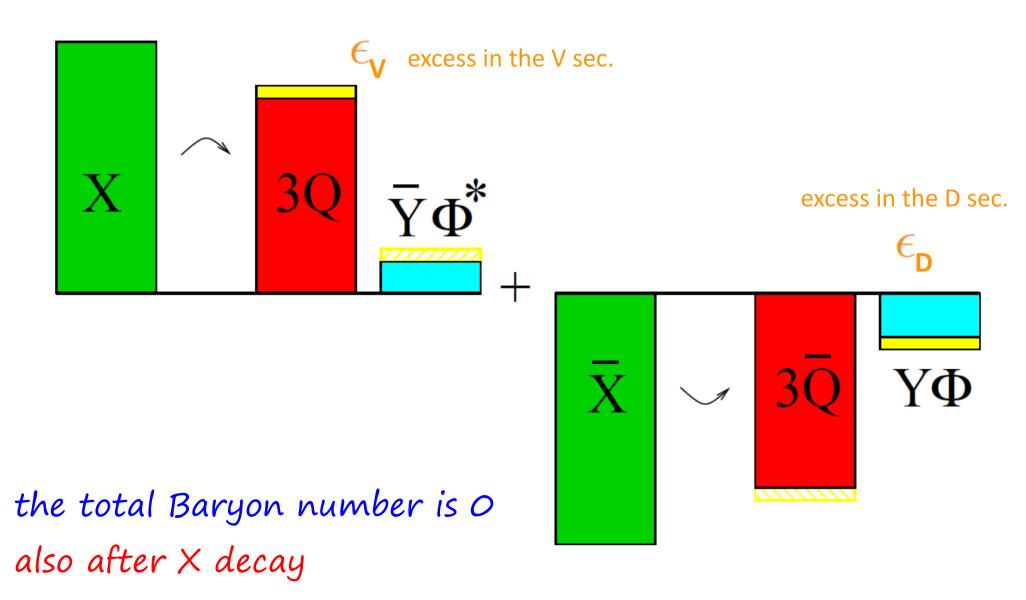
visible sector
CP asymmetry
$$\epsilon = \frac{\Gamma(X \to 3Q) - \Gamma(\bar{X} \to 3\bar{Q})}{\Gamma(X \to all) + \Gamma(\bar{X} \to all)}$$

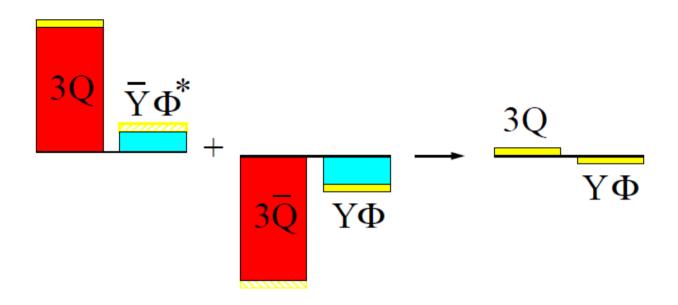
dark sector CP asymmetry

$$\frac{n_B}{s} \simeq \epsilon \left. \frac{n_X}{s} \right|_{RH}$$

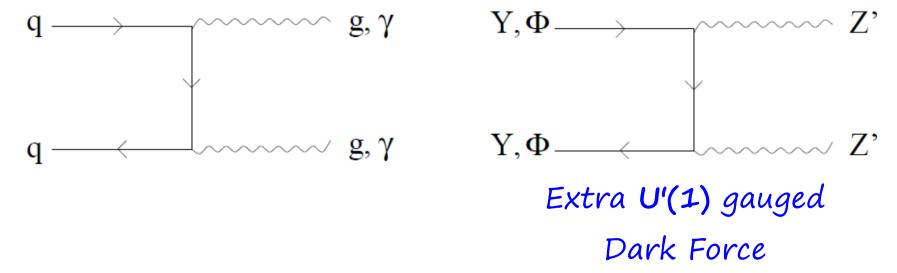
$$\Gamma(X \to 3Q) = \Gamma_{3Q} + \epsilon \Gamma_{tot}$$

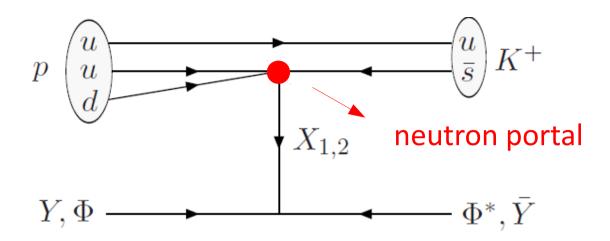

$$\Gamma(X \to \bar{Y}\bar{\Phi}) = \Gamma_{Y\Phi} - \epsilon \Gamma_{tot}$$


$$\Gamma(\bar{X} \to 3\bar{Q}) = \Gamma_{3Q} - \epsilon \Gamma_{tot}$$


$$\Gamma(\bar{X} \to Y\Phi) = \Gamma_{Y\Phi} + \epsilon \Gamma_{tot}$$

CPT
$$\Gamma(X \to all) = \Gamma(\bar{X} \to all) \longrightarrow |\epsilon_{\mathbf{D}}| = |\epsilon_{\mathbf{V}}|$$

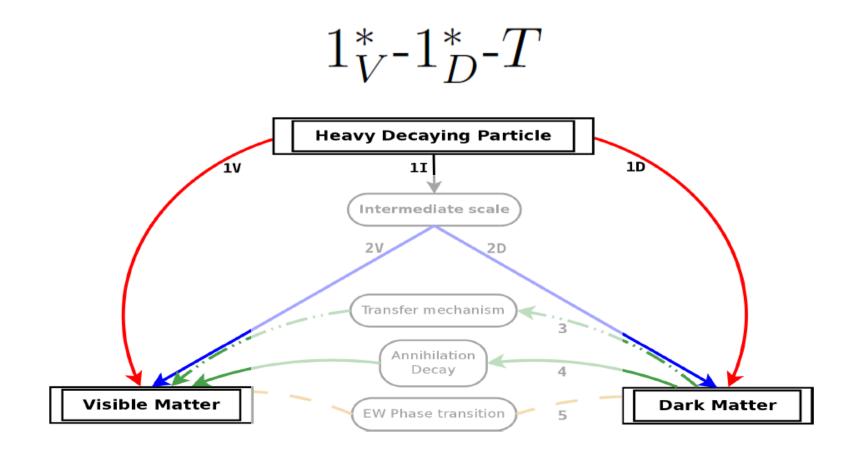

Inflaton decay



The symmetric part annihilate leaving only the asymmetric one

Hylogenesis: DM signature

Induced nucleon decay


$$YN \to \Phi^*M$$

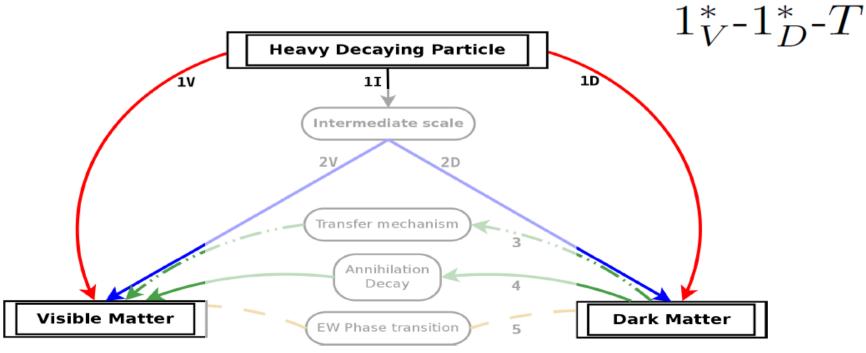
 $\Phi N \to \bar{Y}M$

Different kinematic of the daughter meson

Similar to the standard Nucleon Decay N o M
u Nucleon to Meson

Decay mode	$p_M^{\rm SND}~({ m MeV})$	$p_M^{\mathrm{IND}} \; (\mathrm{MeV})$
$N \to \pi$	460	800 - 1400
$N \to K$	340	680 - 1360
$N o \eta$	310	650 - 1340

- $X_1 \overline{X_1}$ non-thermally produced (inflaton decay,..)
- $X_1 X_1$ decay with CP violation in the V and D sectors
- the symmetric components annihilate away


ADM from leptogenesis

Falkowsky, Ruderman, Volansky, JHEO (11') See also Arina, Sahu NPB(12')

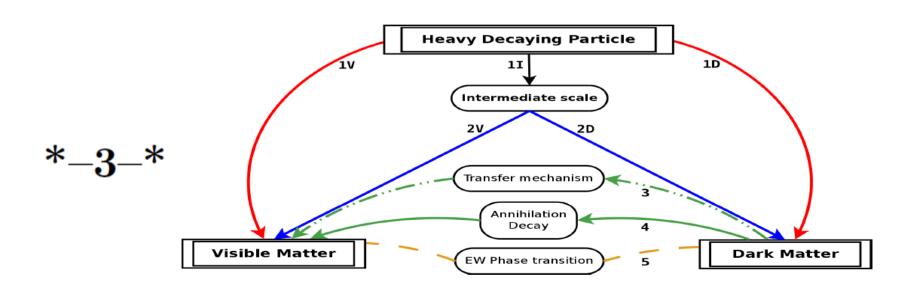
$$N o LH$$
 $N o Y \phi$ ϵ_L ϵ_{DM} two different and unrelated CP asymmetries

differently from hylogenesis, CPT does not imply $\epsilon_L = \epsilon_{DM}$ because N is Majorana

$$m_{DM} \sim \frac{\Omega_{DM}}{\Omega_B} \, \frac{\epsilon_L}{\epsilon_{DM}} \frac{\eta_L}{\eta_{DM}} \, m_p \, \, \, ({\rm KeV-10 \; TeV})$$

Darkogenesis

Shelton, Zurek, PRD82 (10')


A Dark asymmetry is generated by first order dark phase transition
then is transferred to the visible sector by:

...or different Baryo-mech
Feng, Mazumdar, Nath, PRD88 (13')

- electroweak sphaleron
- higher order transfer op

$$O_d LH$$
, $O_d udd$, $O_d LLe$, $O_d LQd O_d LHLH$

$$O_d = X, X^2$$

like darkogenesis a Dark asymmetry is transferred to the visible sector

if the DM is not relativistic at the decoupling T of the transfer op then the DM number density is thermally suppressed allowing heavy DM mass

$$n_i = c_i \mu_i$$
 $c_i = c_i(m_i, T)$
$$\frac{\text{tranfer op}}{\mu_{DM} \sim \mu_B}$$

typically
$$c_i \sim 1$$
 \longrightarrow $n_{\Delta_{DM}} \sim n_{\Delta_B}$ $\frac{m_{DM}}{T} \gg 1$ $c_{DM} \sim e^{-\frac{m_{DM}}{T}}$ \longrightarrow larger DM mass allowed 100GeV - TeV

Buckley, Randall, JHEP (11')

 X_L

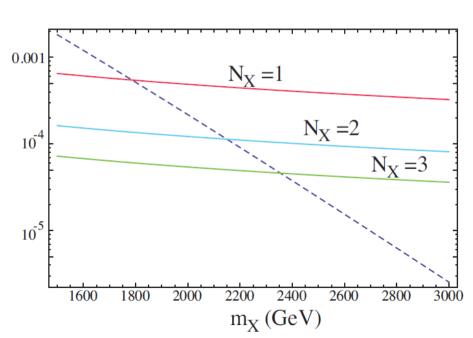
 $SU(2)_L$

fermionic doublet

 \bar{X}_S^0 and $\bar{X}_S^ SU(2)_L$

fermionic singlets

$$\mathcal{L} \supseteq y_X X_L \phi \bar{X}_S^0 + y_X' X_L \phi^* \bar{X}_S^- + m_0 X_S^0 \bar{X}_S^0$$



$$B-3/N_XX$$

the action of the sphaleron enforces chemical eq between DM and quarks

$$f(m_X/T_D) = \frac{f(0)}{N_X^2} \frac{\rho_{\rm DM}}{\rho_B} \frac{m_{\rm proton}}{m_X}$$

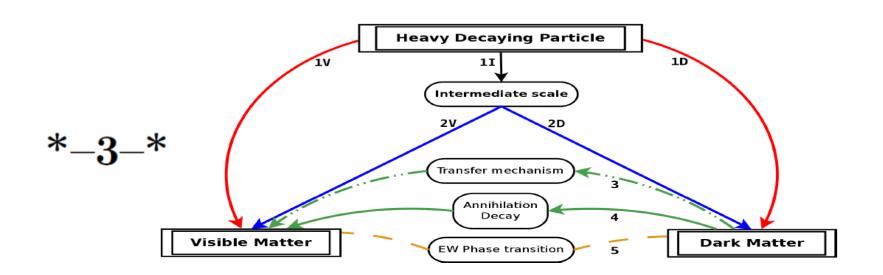
$$\mu_{X_L} = -3N_X \mu_{u_L}$$

 X_L

 $SU(2)_L$

fermionic doublet

 \bar{X}_S^0 and $\bar{X}_S^ SU(2)_L$


fermionic singlets

$$\mathcal{L} \supseteq y_X X_L \phi \bar{X}_S^0 + y_X' X_L \phi^* \bar{X}_S^- + m_0 X_S^0 \bar{X}_S^0$$

 $B-3/N_XX$ preserved

the action of the sphaleron enforces chemical eq between DM and quarks

$$\mu_{X_L} = -3N_X \mu_{u_L}$$

Non-thermal DM: Cladogenesis

Allahverdi, Bhaskar, Sinha, PRD (11')

the dilution factor due to entropy release by moduli decay is very close to the observed baryon asymmetry

$$Y_{\tau} = 3T_{RH}/4M_{\tau}^4 \sim 10^{-9} - 10^{-7}$$

Any previous DM abbundance (thermally produced) is suppressed by the same factor

$$\tau \xrightarrow{\text{Br}_N} N \xrightarrow{\epsilon} \text{SM} \qquad \eta_B \equiv \frac{n_B - n_{\bar{B}}}{s} = Y_\tau \text{ Br}_N \, \epsilon$$
 asymmetry
$$\epsilon \sim 10^{-1} \quad 10^{-2} \lesssim \text{Br}_N \lesssim 1$$

$$W_{\text{extra}} = \lambda_{i\alpha} N_{\alpha} u_i^c X + \lambda'_{ij} d_i^c d_j^c \overline{X} + \frac{M_{\alpha}}{2} N_{\alpha} N_{\alpha} + M_X X \overline{X}$$

$$au$$
 $\xrightarrow{\mathrm{Br}_{\chi}}$ DM $\frac{n_{\chi}}{s} = Y_{\tau} \mathrm{Br}_{\chi}$ $\frac{\Omega_{\mathrm{B}}}{\Omega_{\mathrm{DM}}} \simeq \frac{1 \ \mathrm{GeV}}{m_{\chi}} \times \frac{\epsilon \ \mathrm{Br}_{N}}{\mathrm{Br}_{\chi}}$

$$\mathrm{Br}_{\chi} \gtrsim 10^{-3}$$
 , $5~\mathrm{GeV} \lesssim m_{\chi} \lesssim 500~\mathrm{GeV}$ 25

WIMP & BAU

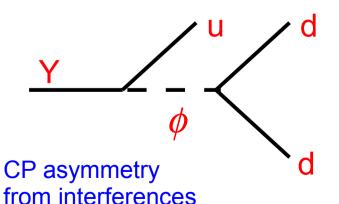
DM in thermal equilibrium in the primordial Universe The number density frozen-out when the expantion rate drops below the rate of DM annihilation

WIMP miracle

 $T_{BBN} < T_{Y_2} < T_f$

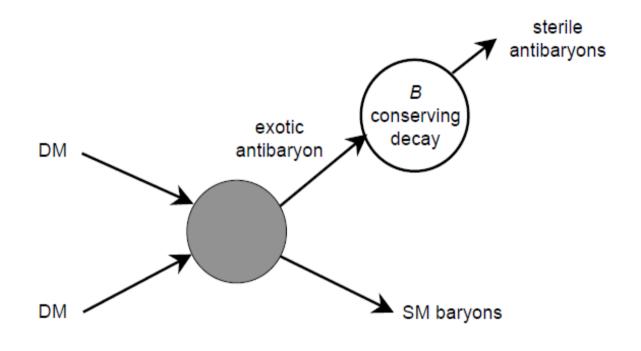
$$\Omega_{CDM}h^2 \simeq \frac{0.3 \times 10^{-26} cm^3 s^{-1}}{\langle \sigma v \rangle_{f.o.}}$$

- Meta-stable WIMP


DM/baryon relic densities coincidences preserving the WIMP miracle

Cui, Sundrum, PRD (13')

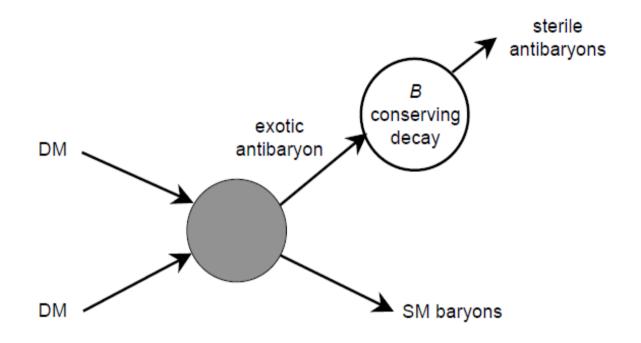
2 WIMPs:


with loop diag

1 stable & 1 decay after freezeout $Y_{Y_1}(T_f) pprox Y_{Y_2}(T_f)$ $T_f \sim m_Y/20$

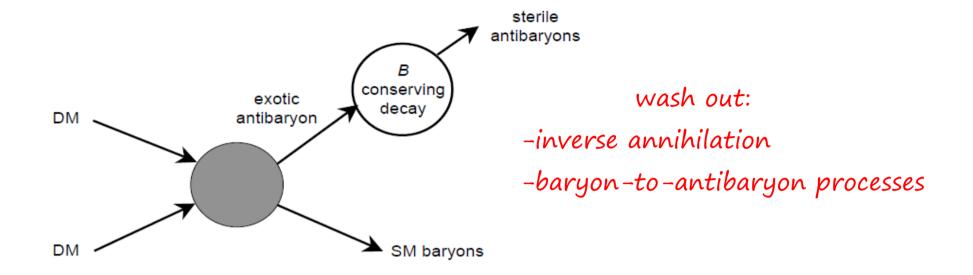
$$Y_B(T_0) \approx \epsilon_{CP} Y_{Y_2}(T_f) \qquad Y_Y(T_f) \simeq Y_Y(T_0)$$

$$\Omega_B = \epsilon_{CP} \frac{m_p}{m_{DM}} \, \Omega_{DM}$$

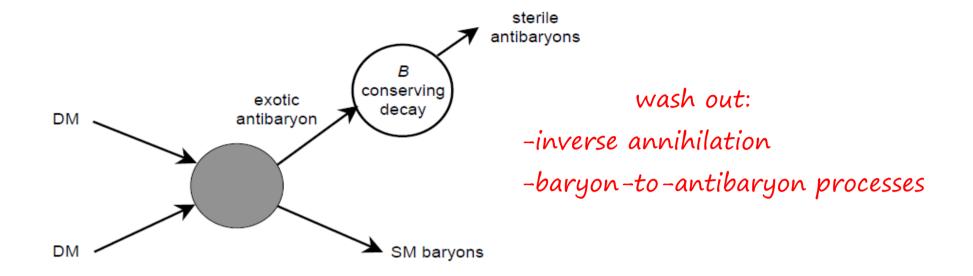


Conventional WIMP

annihilation


BAU

Can be generated


3-Sakharov conditions in WIMP annihilation

- (1) B violation
- (2) C & CP violation
- (3) departure from T eq

wash out processes must freeze-out before WIMP freeze-out

after wash out freeze out, then a large BAU may accumulate from DM annihilation

wash out processes must freeze-out before WIMP freeze-out

- inverse processes are Boltzmann-Suppressed (BS) for T < MDM
- baryon-antibaryon scattering can remain rapid at T << MDM

But if the exotic antibaryon has a mass > MDM then its abbundance is BS at T < MDM

$$m_{\rm DM} \lesssim m_{\rm exotic\,baryon} \lesssim 2m_{\rm DM}$$

$$\begin{split} \frac{dY_X}{dx} &= -\frac{2s(x)}{x\,H(x)}\,\langle\sigma_{\rm ann}v\rangle\,\big[Y_X^2 - (Y_X^{\rm eq})^2\big] \\ \frac{dY_{\Delta B}}{dx} &= \frac{\epsilon\,s(x)}{x\,H(x)}\,\langle\sigma_{\rm ann}v\rangle\,\big[Y_X^2 - (Y_X^{\rm eq})^2\big] - \frac{s(x)}{x\,H(x)}\,\langle\sigma_{\rm washout}v\rangle\frac{Y_{\Delta B}}{2Y_\gamma}\prod_i Y_i^{\rm eq} \end{split}$$

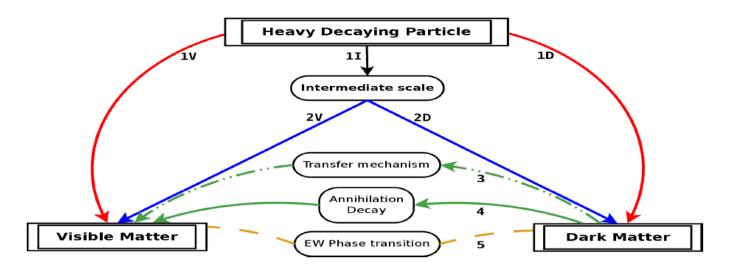
$$x = m_X/T$$

$$Y_{\Delta B}(x) \approx -\frac{\epsilon}{2} \int_0^x dx' \, \frac{dY_X(x')}{dx'} \, \exp\left[-\int_{x'}^x \frac{dx''}{x''} \, \frac{s(x'')}{2Y_\gamma \, H(x'')} \, \langle \sigma_{\rm washout} v \rangle \prod_i Y_i^{\rm eq}(x'')\right]$$
source term
washout term

from DM annihilation

that erase the asymmetry

if it is a rapidly decreasing $\Gamma_{\rm washout}/H < 1$


$$Y_{\Delta B}(\infty) \approx -\frac{\epsilon}{2} \int_{x}^{\infty} dx' \frac{dY_X(x')}{dx} = \frac{\epsilon}{2} \left[Y_X(x_{\text{washout}}) - Y_X(\infty) \right]$$

$$Y_{\Delta B}(\infty) \approx -\frac{\epsilon}{2} \int_{x_{\text{washout}}}^{\infty} dx' \, \frac{dY_X(x')}{dx} = \frac{\epsilon}{2} \left[Y_X(x_{\text{washout}}) - Y_X(\infty) \right]$$

After wash out freeze out, all subsequent WIMP annihilation generate a baryon asymmetry with efficiency $oldsymbol{\mathcal{E}}$

the final BAU from WIMPy baryogenesis
is proportional to
the DM density
at the time when wash out processes freeze out

Summary

Model	DM	HS	BAU	$\mathcal{O}(M_{DM})$	Signal	Diagram
Two singlets EWBG[9]	WIMP	X	EWPHT	2-225 GeV	DD-ID-CO	5*
EW cogenesis [53]	WIMP	X	EWPHT	GeV- TeV	CO	5*
WIMPy $L^{(\dagger)}[15]$	WIMP	X	ANNIH	${ m TeV}$	ID-CO	T-4*
WIMPy $Q^{(\dagger)}[15]$	WIMP	X	ANNIH	$500 { m GeV}$	DD-ID-CO	T-4*
Meta-stable WIMP[19]	WIMP	X	DECAY	GeV- TeV	CO	T-4*
Kitano-Low [26]	$\mathcal{A}\mathcal{D}\mathcal{M}$	•	DECAY	${ m GeV}$	CO	$1_V^* - 1_I^* - T - 2_D$
Hylogenesis [42]	$\mathcal{A}\mathcal{D}\mathcal{M}$	✓	DECAY	$5~{ m GeV}$	IND-DD	1_{V}^{*} - 1_{D}^{*} - T
ADM Leptog [43]	$\mathcal{A}\mathcal{D}\mathcal{M}$	✓	DECAY	${ m KeV} ext{}10{ m TeV}$	DD-ID	1_{V}^{*} - 1_{D}^{*} - T
Darkogenesis [49]	$\mathcal{A}\mathcal{D}\mathcal{M}$	✓	TRANS	$5-15~\mathrm{GeV}$	GW	*-3-*
Baryogenesis from DM [46]	$\mathcal{A}\mathcal{D}\mathcal{M}$	✓	TRANS	3 GeV	DD-CO	1 _D *-3-*
Aidnogenesis [48]	$\mathcal{A}\mathcal{D}\mathcal{M}$	✓	DECAY	$6~{ m GeV}$	DD-FCNC -CO	$1_{V}^{*} - \overline{3} - * - T$
Xogenesis [49]	$\mathcal{A}\mathcal{D}\mathcal{M}$	✓	TRANS	$100 { m GeV-TeV}$	CO	*-3-*
Pangenesis [38]	$\mathcal{A}\mathcal{D}\mathcal{M}$	✓	AFDIN	$1.6-5~\mathrm{GeV}$	DD-CO	*-1 _I *-T-2 _V -2 _D
Cladogenesis [51]	NTDM	•	DECAY	$5\text{-}500 \mathrm{GeV}$	-	1_{I} - 1_{D} - 2_{V}^{*}

$$Y_{\Delta B}(\infty) \approx -\frac{\epsilon}{2} \int_{x_{\text{washout}}}^{\infty} dx' \, \frac{dY_X(x')}{dx} = \frac{\epsilon}{2} \left[Y_X(x_{\text{washout}}) - Y_X(\infty) \right]$$

After wash out freeze out, all subsequent WIMP annihilation generate a baryon asymmetry with efficiency $oldsymbol{\mathcal{E}}$

$$\Omega_{DM} \simeq 5 \,\Omega_B \quad \longleftrightarrow \quad Y_X(\infty) \approx \frac{(5 \text{ GeV}) \, Y_{\Delta B}(\infty)}{m_X}$$

$$Y_X(x_{\text{washout}}) \gg Y_X(\infty)$$

The washout int must become ineffective prior to

XX annihilation freeze-out

In order to generate the observed BAU through WIMPy