

The Lamb shift, `proton charge radius puzzle' etc.

Pulkovo Observatory

Savely Karshenboim

Pulkovo Observatory (FAO PAH) (St. Petersburg) & Max-Planck-Institut für Quantenoptik (Garching)

MAX-PLANCK-INSTITUTE OF QUANTUM OPTICS GARCHING

• • • Outline

- Different methods to determine the proton charge radius
 - spectroscopy of hydrogen (and deuterium)
 - the Lamb shift in muonic hydrogen
 - electron-proton scattering
- The proton radius: the state of the art
 - electric charge radius
 - magnetic radius

• • • • Different methods to determine the proton charge radius

- Spectroscopy of hydrogen (and deuterium)
- The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling. • Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

• • • • Different methods to determine the proton charge radius

Different methods to determine the proton charge radius

• • • • The proton charge radius: spectroscopy vs. empiric fits

Lamb shift measurements in microwave

 Lamb shift used to be measured either as a splitting between 2s_{1/2} and 2p_{1/2} (1057 MHz)

Lamb shift measurements in microwave

Lamb shift used to be measured either as a splitting between 2s_{1/2} and 2p_{1/2} (1057 MHz) or a big contribution into the fine splitting 2p_{3/2} – 2s_{1/2} 11 THz (fine structure).

Lamb shift measurements in microwave & optics

- Lamb shift used to be measured either as a splitting between 2s_{1/2} and 2p_{1/2} (1057 MHz) or a big contribution into the fine splitting 2p_{3/2} – 2s_{1/2} 11 THz (fine structure).
- However, the best result for the Lamb shift has been obtained up to now from UV transitions (such as 1s – 2s).

• • • • Two-photon Doppler-free spectroscopy of hydrogen atom

- is free of linear Doppler effect.
- That makes cooling relatively not too important problem.

All states but 2s are broad because of the E1 decay.

- The widths decrease with increase of n.
- However, higher levels are badly accessible.
- Two-photon transitions double frequency and allow to go higher.

Two-photon spectroscopy involves a number of levels strongly affected by QED.

In "old good time" we had to deal only with 2s Lamb shift.

Theory for p states is simple since their wave functions vanish at r=0.

Now we have more data and more unknown variables.

Spectroscopy of hydrogen (and deuterium)

Two-photon spectroscopy involves a number of levels strongly affected by QED. In "old good time" we had to deal only with 2s Lamb shift.		The idea is based on theoretical study of $\Delta(2) = L_{1s} - 2^{3} \times L_{2s}$ which we understand much better since any short distance effect vanishes for $\Delta(2)$.			
Theory for simple s function <i>Now we ha</i>	p states is The Lamb shift in the hy S. G. Karshenboĭm S. G. Karshenboĭm D.I. Mendeleyev Russian M (Submitted 6 April 1994 Zh. Eksp. Teor. Fiz. 106 A theoretical expression	Theory of p and a state in the hydrogen atom ořm <i>ussian Metrology Research Institute, 198005 St. Petersburg, Russia</i> ril 1994) ?iz. 106 , 414–424 (August 1994) pression is derived for the difference $\Delta E_1(1s_{1/2}) - 8\Delta E_1(2s_{1/2})$ in Lamb shifts			
– Z. Phys. D 39, 109–113 (1997)	ZEITSCHRIFT FÜR PHYSIK D © Springer-Verlag 1997	tne 1s Lämp shiπ L _{1s} & R∞.			
The Lamb shift of excited S-levels in hydrog	en and deuterium atoms				

- Two-photon spectroscopy involves a number of levels strongly affected by QED.
- In "old good time" we had to deal only with 2s Lamb shift.
- Theory for p states is simple since their wave functions vanish at r=0.
- Now we have more data and more unknown variables.

The idea is based on theoretical study of

 $\Delta(2) = L_{1s} - 2^{3} \times L_{2s}$

which we understand much better since any short distance effect vanishes for $\Delta(2)$.

Theory of p and d states is also simple.

That leaves only two variables to determine: the 1s Lamb shift L_{1s} & R_∞.

Fig. 8. Progress in determination of the Rydberg constant by means of two-photon Doppler-free spectroscopy of hydrogen and deuterium. The label *CODATA* stands for the recommended value of the Rydberg constant $R_{\infty}(1998)$ [21] from Eq. (12). The most recent original value is a preliminary result from MIT obtained by microwave means [37].

Fig. 9. Measurement of the Lamb shift in the hydrogen atom. The most accurate experimental result comes from a comparison of the 1s - 2s interval measured at MPQ (Garching) [38] and the 2s - ns/d intervals at LKB (Paris) [39], where n = 8, 10, 12 (see also [33] for detail). Three more results are shown for the average values extracted from direct *Lamb shift* measurements, measurements of the *fine* structure and a comparison of two optical transitions within a single experiment (i.e., a relative optical measurement). The filled part is for theory. Theory and evaluation of the experimental data are presented according to Ref. [36].

Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants

Savely G. Karshenboim^{a, b,*}

^aD.I. Mendeleev Institute for Metrology, 190005 St. Petersburg, Russian Federation ^bMax-Planck-Institut für Quantenoptik, 85748 Garching, Germany

• • • Lamb shift $(2s_{1/2} - 2p_{1/2})$ in the hydrogen atom

Uncertainties:
Experiment: 2 ppm
QED: < 1 ppm
Proton size: 2 ppm

There are data on a number of transitions, but most of them are correlated.

H & D spectroscopy

- Complicated theory
- Some contributions are not cross checked
- More accurate than experiment
- No higher-order nuclear structure effects

```
\nu_H(1s-2s) = \frac{3}{4} c \operatorname{R}_{\infty} \left\{ 1 \quad + \quad \left[ \frac{11}{48} (Z\alpha)^2 + \frac{43}{384} (Z\alpha)^4 + \frac{851}{12288} (Z\alpha)^6 + \ldots \right] \right.
                                                                  + \frac{m_e}{m_n} \left[ -1 - \frac{13}{24} (Z\alpha)^2 - \frac{17}{64} (Z\alpha)^4 + \ldots \right]
                                                                    + \left(\frac{m_e}{m_e}\right)^2 \left[1 + \frac{41}{48}(Z\alpha)^2 + ...\right]
                                                                    +\left(\frac{m_e}{m_e}\right)^3 \left[-1+\ldots\right]
                                                                    + \frac{(Z\alpha)^3}{\pi} \frac{m_e}{m_e} \left[ -\frac{7}{9} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{9} \ln k_0(2s) + \frac{64}{9} \ln k_0(1s) - \frac{112}{3} \ln 2 - \frac{805}{54} \right]
                                                                   + \frac{(Z\alpha)^3}{\pi} \left(\frac{m_e}{m_n}\right)^2 \left[\frac{7}{3}\ln\frac{1}{(Z\alpha)^2} + \frac{8}{3}\ln k_0(2s) - \frac{64}{3}\ln k_0(1s) + 112\ln 2 + \frac{889}{18}\right] + \dots
                                                                   + \frac{\alpha}{\pi}(Z\alpha)^2 \left[ -\frac{28}{9} \ln \frac{1}{(Z\alpha)^2} - \frac{4}{9} \log k_0(2s) + \frac{32}{9} \log k_0(1s) - \frac{266}{135} \right]
                                                                   + \frac{\alpha}{\pi}(Z\alpha)^2 \frac{m_e}{m_e} \left[ \frac{28}{3} \ln \frac{1}{(Z\alpha)^2} + \frac{4}{3} \log k_0(2s) - \frac{32}{3} \log k_0(1s) + \frac{14}{5} \right]
                                                                    + \frac{\alpha}{\pi} (Z\alpha)^2 \left(\frac{m_e}{m_p}\right)^2 \left[-\frac{56}{3} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{3} \log k_0(2s) + \frac{64}{3} \log k_0(1s) - \frac{14}{15}\right]
                                                                    + \alpha(Z\alpha)^3 \left[\frac{14}{3}\log 2 - \frac{2989}{288}\right]
                                                                    + \alpha (Z\alpha)^3 \frac{m_e}{m_e} \left[ -14 \log 2 + \frac{2989}{96} \right]
                                                                     + \frac{\alpha}{\pi}(Z\alpha)^4 \left[ \frac{7}{8} \ln^2 \frac{1}{(Z\alpha)^2} + \left( -\frac{208}{9} \ln 2 + \frac{347}{90} \right) \ln \frac{1}{(Z\alpha)^2} + 71.626974 \right] + \dots
                                                                     + \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^2 \left[-\frac{7}{2}\pi^2 \ln 2 + \frac{70\pi^2}{81} + \frac{15253}{1944} + \frac{21}{4}\zeta(3)\right]
                                                                     + \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^2 \frac{m_e}{m_n} \left[\frac{21}{2}\pi^2 \ln 2 - \frac{70\pi^2}{27} - \frac{15253}{648} - \frac{63}{4}\zeta(3)\right]
                                                                     + 50.2976 \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^3
                                                                    + \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^4 \left[\frac{56}{81}\ln^3\frac{1}{(Z\alpha)^2} + \frac{1}{27}\ln^2\frac{1}{(Z\alpha)^2}\right]
                                                                              +\left(-\frac{246337}{32400}-\frac{385\pi^2}{81}+\frac{1126}{135}\ln 2-\frac{7\pi^2}{4}\ln 2-\frac{248}{27}\ln^2 2-34.845333\right)\ln\frac{1}{(Z\alpha)^2}
                                                                                 +147(25) + . . .
                                                                     + \quad \left(\frac{\alpha}{\pi}\right)^3 (Z\alpha)^2 \left[-\frac{248659831}{279936} + \frac{1765757\pi^2}{29160} - \frac{11137\pi^4}{9720} + \frac{7952}{27}\ln 2 - \frac{33509\pi^2}{324}\ln 2 - \frac{11137\pi^4}{324}\right]
                                                                              +\frac{1673\pi^2}{405}\log^2 2+\frac{497}{81}\log^4 2+\frac{588497}{6912}\zeta(3)+\frac{847\pi^2}{216}\zeta(3)-\frac{595}{72}\zeta(5)\right]+\ldots
                                                                    + \quad \frac{\alpha(Z\alpha)^3}{\pi^2} \frac{m_e}{m_p} \left\lceil \frac{3136}{81} - \frac{245\pi^2}{108} + \frac{14\pi^2}{3} \ln 2 - 14\zeta(3) - \frac{14}{9}\pi(Z\alpha) \ln^2 \frac{1}{(Z\alpha)^2} \right\rceil
                                                                    -\frac{14}{\alpha}(Z\alpha)^2\left(\frac{m_ecR_p}{t}\right)^2
```

H & D spectroscopy

• Complicated theory

 Some contributions are not cross checked

```
\begin{split} \nu_H(1s-2s) &= \frac{3}{4} \, e\, \mathrm{R}_\infty \left\{ 1 &+ \left[ \frac{11}{48} (Z\alpha)^2 + \frac{43}{384} (Z\alpha)^4 + \frac{851}{12288} (Z\alpha)^6 + \ldots \right] \right. \\ &+ \left. \frac{m_e}{m_p} \left[ -1 - \frac{13}{24} (Z\alpha)^2 - \frac{17}{64} (Z\alpha)^4 + \ldots \right] \right. \\ &+ \left. \left( \frac{m_e}{m_p} \right)^2 \left[ 1 + \frac{41}{48} (Z\alpha)^2 + \ldots \right] \right. \\ &+ \left. \left( \frac{m_e}{m_p} \right)^3 \left[ -1 + \ldots \right] \right. \\ &+ \left. \left( \frac{m_e}{m_p} \right)^3 \left[ -1 + \ldots \right] \right. \\ &+ \left. \frac{(Z\alpha)^3}{\pi} \frac{m_e}{m_p} \left[ -\frac{7}{9} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{9} \ln k_0(2s) + \frac{64}{9} \ln k_0(1s) - \frac{112}{13} \ln 2 - \frac{805}{54} \right] \\ &+ \left. \frac{(Z\alpha)^3}{\pi} \left( \frac{m_e}{m_p} \right)^2 \left[ \frac{7}{3} \ln \frac{1}{(Z\alpha)^2} + \frac{8}{3} \ln k_0(2s) - \frac{64}{3} \ln k_0(1s) + 112 \ln 2 + \frac{889}{18} \right] + \ldots \\ &+ \left. \frac{\alpha}{\pi} (Z\alpha)^2 \left[ -\frac{28}{29} \ln \frac{1}{(Z\alpha)^2} - \frac{4}{9} \log k_0(2s) - \frac{32}{9} \log k_0(1s) - \frac{266}{135} \right] \\ &+ \left. \frac{\alpha}{\pi} (Z\alpha)^2 \frac{m_e}{m_p} \left[ \frac{28}{3} \ln \frac{1}{(Z\alpha)^2} + \frac{4}{3} \log k_0(2s) - \frac{32}{3} \log k_0(1s) + \frac{14}{5} \right] \\ &+ \left. \frac{\alpha}{\pi} (Z\alpha)^2 \left( \frac{m_e}{m_p} \right)^2 \left[ -\frac{56}{5} \ln \frac{1}{(Z\alpha)^2} - \frac{4}{3} \log k_0(2s) - \frac{64}{3} \log k_0(1s) - \frac{14}{15} \right] \\ &+ \left. \frac{\alpha}{\pi} (Z\alpha)^2 \left( \frac{m_e}{m_p} \right)^2 \left[ -\frac{56}{5} \ln \frac{1}{(Z\alpha)^2} - \frac{4}{3} \log k_0(2s) - \frac{32}{3} \log k_0(1s) + \frac{14}{5} \right] \\ &+ \left. \frac{\alpha}{\pi} (Z\alpha)^2 \left( \frac{m_e}{m_p} \right)^2 \left[ -\frac{56}{5} \ln \frac{1}{(Z\alpha)^2} - \frac{2}{3} \log k_0(2s) - \frac{64}{3} \log k_0(1s) - \frac{14}{15} \right] \\ &+ \left. \frac{\alpha}{\pi} (Z\alpha)^2 \left( \frac{m_e}{m_p} \right)^2 \left[ -\frac{56}{5} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{3} \log k_0(2s) - \frac{32}{3} \log k_0(1s) - \frac{14}{15} \right] \\ &+ \left. \frac{\alpha}{\pi} (Z\alpha)^2 \left( \frac{m_e}{m_p} \right)^2 \left[ -\frac{56}{5} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{3} \log k_0(2s) + \frac{64}{3} \log k_0(1s) - \frac{14}{15} \right] \\ &+ \left. \frac{\alpha}{\pi} (Z\alpha)^2 \left( \frac{m_e}{m_p} \right)^2 \left[ -\frac{56}{5} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{3} \log k_0(2s) + \frac{64}{3} \log k_0(1s) - \frac{14}{15} \right] \\ &+ \left. \frac{\alpha}{\pi} (Z\alpha)^2 \left( \frac{m_e}{m_p} \right)^2 \left[ -\frac{56}{5} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{3} \log k_0(2s) + \frac{64}{3} \log k_0(1s) - \frac{14}{15} \right] \\ &+ \left. \frac{6}{\pi} \left( \frac{1}{2} - \frac{14}{2} \right) \right] \\ &+ \left( \frac{1}{2} - \frac{1}{2} + \frac{1}{2} \right) \right] \\ &+ \left( \frac{1}{2} - \frac{1}{2} + \frac{1}{2} \right) \left[ \frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \\ &+ \left( \frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left[ \frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \\ &+ \left( \frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2
```

Fig. 1. It is a relation between the 1s-2s transition frequency $v_H(1s-2s)$ and the Rydberg constant R_{∞} . A correction for the difference between the center of gravity of the 1s and 2s hyperfine multiplets and their triplet component is not included. This figure is an example of a complicated relationship, and is not intended to be read.

> No higher-order nuclear structure effects

```
\begin{array}{rcl} + & 50.2976 \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^3 \\ + & \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^4 \left[\frac{56}{81}\ln^3\frac{1}{(Z\alpha)^2} + \frac{1}{27}\ln^2\frac{1}{(Z\alpha)^2} \\ & + \left(-\frac{246337}{32400} - \frac{385\pi^2}{81} + \frac{1126}{135}\ln 2 - \frac{7\pi^2}{4}\ln 2 - \frac{248}{27}\ln^2 2 - 34.845333\right)\ln\frac{1}{(Z\alpha)^2} \\ & + 147(25)\right] + \dots \\ + & \left(\frac{\alpha}{\pi}\right)^3 (Z\alpha)^2 \left[-\frac{248659831}{279936} + \frac{1765757\pi^2}{29160} - \frac{11137\pi^4}{9720} + \frac{7952}{27}\ln 2 - \frac{33509\pi^2}{324}\ln 2 \\ & + \frac{1673\pi^2}{405}\log^2 2 + \frac{497}{81}\log^4 2 + \frac{588497}{6912}\zeta(3) + \frac{847\pi^2}{216}\zeta(3) - \frac{595}{72}\zeta(5)\right] + \dots \\ + & \frac{\alpha(Z\alpha)^3}{27}\frac{m_e}{m_p} \left[\frac{3136}{81} - \frac{245\pi^2}{108} + \frac{14\pi^2}{3}\ln 2 - 14\zeta(3) - \frac{14}{9}\pi(Z\alpha)\ln^2\frac{1}{(Z\alpha)^2}\right] \\ - & \frac{14}{9}(Z\alpha)^2 \left(\frac{m_e cR_p}{\hbar}\right)^2 \\ + & \dots \end{array}\right\}
```

H & D spectroscopy

- Complicated theory
- Some contributions are not cross checked
- More accurate than experiment
- No higher-order nuclear structure effects

```
\nu_H(1s-2s) = \frac{3}{4} c \operatorname{R}_{\infty} \left\{ 1 \quad + \quad \left[ \frac{11}{48} (Z\alpha)^2 + \frac{43}{384} (Z\alpha)^4 + \frac{851}{12288} (Z\alpha)^6 + \ldots \right] \right.
                                                                  + \frac{m_e}{m_n} \left[ -1 - \frac{13}{24} (Z\alpha)^2 - \frac{17}{64} (Z\alpha)^4 + \ldots \right]
                                                                    + \left(\frac{m_e}{m_e}\right)^2 \left[1 + \frac{41}{48}(Z\alpha)^2 + ...\right]
                                                                    +\left(\frac{m_e}{m_e}\right)^3 \left[-1+\ldots\right]
                                                                    + \frac{(Z\alpha)^3}{\pi} \frac{m_e}{m_e} \left[ -\frac{7}{9} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{9} \ln k_0(2s) + \frac{64}{9} \ln k_0(1s) - \frac{112}{3} \ln 2 - \frac{805}{54} \right]
                                                                   + \frac{(Z\alpha)^3}{\pi} \left(\frac{m_e}{m_n}\right)^2 \left[\frac{7}{3}\ln\frac{1}{(Z\alpha)^2} + \frac{8}{3}\ln k_0(2s) - \frac{64}{3}\ln k_0(1s) + 112\ln 2 + \frac{889}{18}\right] + \dots
                                                                   + \frac{\alpha}{\pi}(Z\alpha)^2 \left[ -\frac{28}{9} \ln \frac{1}{(Z\alpha)^2} - \frac{4}{9} \log k_0(2s) + \frac{32}{9} \log k_0(1s) - \frac{266}{135} \right]
                                                                   + \frac{\alpha}{\pi}(Z\alpha)^2 \frac{m_e}{m_e} \left[ \frac{28}{3} \ln \frac{1}{(Z\alpha)^2} + \frac{4}{3} \log k_0(2s) - \frac{32}{3} \log k_0(1s) + \frac{14}{5} \right]
                                                                    + \frac{\alpha}{\pi} (Z\alpha)^2 \left(\frac{m_e}{m_p}\right)^2 \left[-\frac{56}{3} \ln \frac{1}{(Z\alpha)^2} - \frac{8}{3} \log k_0(2s) + \frac{64}{3} \log k_0(1s) - \frac{14}{15}\right]
                                                                    + \alpha(Z\alpha)^3 \left[\frac{14}{3}\log 2 - \frac{2989}{288}\right]
                                                                    + \alpha (Z\alpha)^3 \frac{m_e}{m_e} \left[ -14 \log 2 + \frac{2989}{96} \right]
                                                                     + \frac{\alpha}{\pi}(Z\alpha)^4 \left[ \frac{7}{8} \ln^2 \frac{1}{(Z\alpha)^2} + \left( -\frac{208}{9} \ln 2 + \frac{347}{90} \right) \ln \frac{1}{(Z\alpha)^2} + 71.626974 \right] + \dots
                                                                     + \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^2 \left[-\frac{7}{2}\pi^2 \ln 2 + \frac{70\pi^2}{81} + \frac{15253}{1944} + \frac{21}{4}\zeta(3)\right]
                                                                     + \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^2 \frac{m_e}{m_n} \left[\frac{21}{2}\pi^2 \ln 2 - \frac{70\pi^2}{27} - \frac{15253}{648} - \frac{63}{4}\zeta(3)\right]
                                                                     + 50.2976 \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^3
                                                                    + \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^4 \left[\frac{56}{81}\ln^3\frac{1}{(Z\alpha)^2} + \frac{1}{27}\ln^2\frac{1}{(Z\alpha)^2}\right]
                                                                              +\left(-\frac{246337}{32400}-\frac{385\pi^2}{81}+\frac{1126}{135}\ln 2-\frac{7\pi^2}{4}\ln 2-\frac{248}{27}\ln^2 2-34.845333\right)\ln\frac{1}{(Z\alpha)^2}
                                                                                 +147(25) + . . .
                                                                     + \quad \left(\frac{\alpha}{\pi}\right)^3 (Z\alpha)^2 \left[-\frac{248659831}{279936} + \frac{1765757\pi^2}{29160} - \frac{11137\pi^4}{9720} + \frac{7952}{27}\ln 2 - \frac{33509\pi^2}{324}\ln 2 - \frac{11137\pi^4}{324}\right]
                                                                              +\frac{1673\pi^2}{405}\log^2 2+\frac{497}{81}\log^4 2+\frac{588497}{6912}\zeta(3)+\frac{847\pi^2}{216}\zeta(3)-\frac{595}{72}\zeta(5)\right]+\ldots
                                                                    + \quad \frac{\alpha(Z\alpha)^3}{\pi^2} \frac{m_e}{m_p} \left\lceil \frac{3136}{81} - \frac{245\pi^2}{108} + \frac{14\pi^2}{3} \ln 2 - 14\zeta(3) - \frac{14}{9}\pi(Z\alpha) \ln^2 \frac{1}{(Z\alpha)^2} \right\rceil
                                                                    -\frac{14}{\alpha}(Z\alpha)^2\left(\frac{m_ecR_p}{t}\right)^2
```

Proton radius from hydrogen

Proton radius from hydrogen

Proton radius from hydrogen

• • • The Lamb shift in muonic hydrogen

- Used to believe: since a muon is heavier than an electron, muonic atoms are more sensitive to the nuclear structure.
- Not quite true. What is important: scaling of various contributions with m.

- Scaling of contributions
 - nuclear finite size effects: ~ m³;
 - standard Lamb-shift QED and its uncertainties: ~ m;
 - width of the 2p state: ~
 m;
 - nuclear finite size effects for HFS: ~ m³

• • • The Lamb shift in muonic hydrogen: experiment

The size of the proton

Randolf Pohl¹, Aldo Antognini¹, François Nez², Fernando D. Amaro³, François Biraben², João M. R. Cardoso³, Daniel S. Covita^{3,4}, Andreas Dax⁵, Satish Dhawan⁵, Luis M. P. Fernandes³, Adolf Giesen⁶†, Thomas Graf⁶, Theodor W. Hänsch¹, Paul Indelicato², Lucile Julien², Cheng-Yang Kao⁷, Paul Knowles⁸, Eric-Olivier Le Bigot², Yi-Wei Liu⁷, José A. M. Lopes³, Livia Ludhova⁸, Cristina M. B. Monteiro³, Françoise Mulhauser⁸†, Tobias Nebel¹, Paul Rabinowitz⁹, Joaquim M. F. dos Santos³, Lukas A. Schaller⁸, Karsten Schuhmann¹⁰, Catherine Schwob², David Taqqu¹¹, João F. C. A. Veloso⁴ & Franz Kottmann¹²

Fig. 16. Level scheme of the PSI experiment on the Lamb shift in a muonic hydrogen [88] (not to scale). The hyperfine structure is not shown.

• • • The Lamb shift in muonic hydrogen: experiment

Figure 4 | **Summed X-ray time spectra**. Spectra were recorded on resonance (**a**) and off resonance (**b**). The laser light illuminates the muonic atoms in the laser time window $t \in [0.887, 0.962] \mu$ s indicated in red. The 'prompt' X-rays are marked in blue (see text and Fig. 1). Inset, plots showing complete data; total number of events are shown.

Figure 5 | **Resonance.** Filled blue circles, number of events in the laser time window normalized to the number of 'prompt' events as a function of the laser frequency. The fit (red) is a Lorentzian on top of a flat background, and gives a χ^2 /d.f. of 28.1/28. The predictions for the line position using the proton radius from CODATA³ or electron scattering^{1,2} are indicated (yellow data points, top left). Our result is also shown ('our value'). All error bars are the ±1 s.d. regions. One of the calibration measurements using water absorption is also shown (black filled circles, green line).

Theoretical summary

#	$\Delta E \; [\mathrm{meV}]$	Ref.				
Unperturbed quantum mechanics						
0	Table I					
Specific QED						
1	205.02612	Table II				
2	1.65885	Table II				
3	0.00752	Table II				
4	-0.00089(2)	Table II				
5	-0.00254	Table II				
6	-0.00152	Table II				
Re-scaled QED						
7	-0.66769	Table IV				
8	-0.04497	Table IV				

Proton-line QED						
9	Eq. (12)					
	Proton-finite-size					
10	$-5.1974 \; r_p^2$	Table V				
12	$-0.0282 \ r_p^2$	Table V				
13	$0.0006 \ r_p^2$	Table V				
14	$0.06354\ r_p^2 - 0.0259(35)$	Table VI				
15	0.0088(21)	Eq. (31)				
Hadronic VP						
16	0.0106(10)	Eq. (35)				
Total	$205.9067(42) - 5.1620 r_p^2$					

Theory of Lamb Shift in Muonic Hydrogen

Savely G. Karshenboim^{a)} Max-Planck-Institut für Quantenoptik, Garching 85748, Germany and Pulkovo Observatory, St. Petersburg 196140, Russia

> Evgeny Yu. Korzinin and Valery A. Shelyuto D. I. Mendeleev Institute for Metrology, St. Petersburg 190005, Russia

> > Vladimir G. Ivanov

Pulkovo Observatory, St. Petersburg 196140, Russia

The Lamb shift in muonic hydrogen: theory

#	Contribution		Our selection		Pachuck	ki ¹⁻³	Borie	5
•		Ref.	Value	Unc.	Value	Unc.	Value	Unc.
1	NR One loop electron VP	1,2			205.0074			
2	inclutiviatic correction (corrected)	1-3,5			0.0169			
3	Relativistic and loop VP	5	205.0282				205.0282	
4	NR two-loop electron VP	5,14	1.5081		1.5079		1.5081	
5	Polarization insertion in two Coulomb lines	12,5	0.1509		0.1509		0.1510	
4	NR three-loop electron VP	11	0.00529					
7	Polarisation insertion in two	11,12	0.00223					
	and three Coulomb lines (corrected)							
8	Three-loop VP (total, uncorrected)				0.0076		0.00761	
9	Wichmann-Kroll	5,15,16	-0.00103				-0.00103	
10	Light by light electron loop contribution	6	0.00135	0.00135			0.00135	0.00015
	(Virtual Delbrück scattering)							
11	Radiative photon and electron polarization	1,2	-0.00500	0.0010	-0.006	0.001	-0.005	
	in the Coulomb line $\alpha^2(Z\alpha)^4$							
12	Electron loop in the radiative photon	17–19	-0.00150					
	of order $\alpha^2 (Z\alpha)^4$							
13	Mixed electron and muon loops	20	0.00007				0.00007	
14	Hadronic polarization $\alpha(Z\alpha)^4 m_r$	21-23	0.01077	0.00038	0.0113	0.0003	0.011	0.002
15	Hadronic polarization $\alpha(Z\alpha)^5 m_r$	22,23	0.000047					
16	Hadronic polarization in the radiative	22,23	-0.000015					
	photon $\alpha^2 (Z\alpha)^4 m_r$							
17	Recoil contribution	24	0.05750		0.0575		0.0575	
18	Recoil finite size	5	0.01300	0.001			0.013	0.001
19	Recoil correction to VP	5	-0.00410				-0.0041	
20	Radiative corrections of order $a^n (Z\alpha)^k m_r$	2,7	-0.66770		-0.6677		-0.66788	
21	Muon Lamb shift 4th order	5	-0.00169				-0.00169	
22	Recoil corrections of order $\alpha(Z\alpha)^5 \frac{m}{M}m_r$	2,5-7	-0.04497		-0.045		-0.04497	
23	Recoil of order α^6	2	0.00030		0.0003			
24	Radiative recoil corrections of	1,2,7	-0.00960		-0.0099		-0.0096	
	order $\alpha(Z\alpha)^n \frac{m}{M}m_r$							
25	Nuclear structure correction of order $(Z\alpha)^5$	2,5,22,25	0.015	0.004	0.012	0.002	0.015	0.004
	(Proton polarizability contribution)							
26	Polarization operator induced correction	23	0.00019					
	to nuclear polarizability $\alpha(Z\alpha)^5 m_r$							
27	Radiative photon induced correction	23	-0.00001					
	to nuclear polarizability $\alpha(Z\alpha)^5 m_r$							
	Sum		206.0573	0.0045	206.0432	0.0023	206.05856	0.0046

Table 1: All known radius-**independent** contributions to the Lamb shift in μ p from different authors, and the one we selected. We follow the nomenclature of Eides *et al.*⁷ Table 7.1. Item # 8 in Refs.^{2,5} is the sum of items #6 and #7, without the recent correction from Ref.¹². The error of #10 has been increased to 100% to account for a remark in Ref.⁷. Values are in meV and the uncertainties have been added in quadrature.

Discrepancy ~
 0.300 meV.

 $\Delta E_{LS} = 206.0573(45) - 5.2262 r_{\rm p}^2 - 0.0347 r_{\rm p}^3 \,{\rm meV}$

 Only few contributions are important at this level.

They are reliable.

••• Theory of H and μ H:

- Rigorous
- Ab initio
- Complicated
- Very accurate
- Partly not cross checked
- Needs no higherorder proton structure

- Rigorous
- Ab initio
- Transparent
- Very accurate
- Cross checked
- Needs higher-order proton structure (much below the discrepancy)

••• Theory of H and μ H:

• Rigorous • Rigorous • Ab initio • Ab initio O Complicated O Transparent The *th* uncertainty is much below the level of the discrepancy v ur y audurato • Partly not cross Cross checked checked • Needs higher-order proton structure • Needs no higher-(much below the order proton

discrepancy)

structure

Spectroscopy of H and μH:

- Many transitions in different labs.
- One dominates.
- Correlated.
- Metrology involved.
- The discrepancy is much below the line width.
- Sensitive to various systematic effects.

- One experiment
- A correlated measurement on μD
- No real metrology
- Discrepancy is of few line widths.
- Not sensitive to many perturbations.

••• H vs μH:

• μ H: **much** more sensitive to the R_p term:

- less accuracy in theory and experiment is required;
- easier for estimation of systematic effects etc.
- H experiment: easy to see a signal, hard to interpret.
- μH experiment: hard to see a signal, easy to interpret.

• • • Elastic electron-proton scattering

Elastic electron-proton scattering

• • • • Electron-proton scattering: new Mainz experiment

High-precision determination of the electric and magnetic form factors of the proton

J. C. Bernauer,^{1,*} P. Achenbach,¹ C. Ayerbe Gayoso,¹ R. Böhm,¹ D. Bosnar,² L. Debenjak,³ M. O. Distler,^{1,†} L. Doria,¹ A. Esser,¹ H. Fonvieille,⁴ J. M. Friedrich,⁵ J. Friedrich,¹ M. Gómez Rodríguez de la Paz,¹ M. Makek,² H. Merkel,¹ D. G. Middleton,¹ U. Müller,¹ L. Nungesser,¹ J. Pochodzalla,¹ M. Potokar,³ S. Sánchez Majos,¹ B. S. Schlimme,¹ S. Širca,^{6,3} Th. Walcher,¹ and M. Weinriefer¹

$$\langle r_E^2 \rangle^{\frac{1}{2}} = 0.879(5)_{\text{stat.}}(4)_{\text{syst.}}(2)_{\text{model}}(4)_{\text{group}} \,\text{fm}, \langle r_M^2 \rangle^{\frac{1}{2}} = 0.777(13)_{\text{stat.}}(9)_{\text{syst.}}(5)_{\text{model}}(2)_{\text{group}} \,\text{fm}.$$

Electron-proton scattering: evaluations of `the World data'

• Mainz:

 $\langle r_E^2 \rangle^{\frac{1}{2}} = 0.879(5)_{\text{stat.}}(4)_{\text{syst.}}(2)_{\text{model}}(4)_{\text{group}} \text{ fm},$ $\langle r_M^2 \rangle^{\frac{1}{2}} = 0.777(13)_{\text{stat.}}(9)_{\text{syst.}}(5)_{\text{model}}(2)_{\text{group}} \text{ fm}.$

JLab (similar results also from Ingo Sick)

 $\begin{array}{rcl} (r_E^2)^{1/2} &=& 0.875 \pm 0.008_{\rm exp} \pm 0.006_{\rm fit} \ {\rm fm} & (3) \\ (r_M^2)^{1/2} &=& 0.867 \pm 0.009_{\rm exp} \pm 0.018_{\rm fit} \ {\rm fm}, & (4) \end{array}$

• Charge radius:

the Pohl et al. uncertainty.

High Precision Measurement of the Proton Elastic Form Factor Ratio μ_pG_E/G_M at Low Q²
X. Zhan,^{1,2} K. Allada,³ D. S. Armstrong,⁴ J. Arrington,² W. Bertozzi,¹ W. Boeglin,⁵ J.-P. Chen,⁶ K. Chirapatpimol,⁷
S. Choi,⁸ E. Chudakov,⁶ E. Cisbani,^{9,10} P. Decowski,¹¹ C. Dutta,¹² S. Frullani,⁹ E. Fuchey,¹³ F. Garibaldi,⁹ S. Giald,¹
R. Gilman,^{6,14} J. Glister,^{15,16} K. Hafidi,² B. Hahn,⁴ J.-O. Hansen,⁶ D. W. Highbotham,⁶ T. Holmstrom,¹⁷ R. J. Holt,² J. Huang,¹ G. M. Huber,¹⁸ F. Itard,¹³ C. W. de Jager,⁶ X. Jiang,¹⁴ J. Johnson,⁹ J. Katich,⁴ R. de Leo,²⁰
J. J. LeRose,⁶ R. Lindgren,⁷ E. Long,²¹ D. J. Margaziotis,²² S. May-Tal Beck,²³ D. Meekins,⁶ R. Michaels,⁶
B. Moffit,^{1,6} B. E. Norum,⁷ M. Olson,³⁴ E. Piasetzky,²⁵ I. Pomerantz,²⁵ D. Protopopescu,²⁶ X. Qian,²⁷ Y. Qiang,^{27,6}
A. Rakhman,³² R. D. Ransome,¹⁴ P. E. Reimer,⁷ J. Reinhold,²⁹ S. Siordan,⁷ G. Ron,^{25,30} A. Saha,⁶ A. J. Satty,³¹
B. Sawatzky,^{6,32} E. C. Schulte,¹⁴ M. Shabestari,⁷ A. Shahinyan,³³ S.Širca,^{34,35} P. Solvignon,^{2,6} N. F. Sparveris,^{1,32}
S. Strauch,³⁶ R. Subedi,⁷ V. Sulkosky,^{1,6} I. Vilardi,²⁰ Y. Wang,³⁷ B. Wojtsekhowski,⁶ Z. Ye,³⁸ and Y. Zhang³⁹ (Jefferson Lab Hall A Collaboration)

Electron-proton scattering: evaluations of `the World data'

(Jefferson Lab Hall A Collaboration)

Electron-proton scattering: evaluations of `the World data'

• Mainz:

 $\langle r_E^2 \rangle^{\frac{1}{2}} = 0.879(5)_{\text{stat.}}(4)_{\text{syst.}}(2)_{\text{model}}(4)_{\text{group}} \text{ fm},$ $\langle r_M^2 \rangle^{\frac{1}{2}} = 0.777(13)_{\text{stat.}}(9)_{\text{syst.}}(5)_{\text{model}}(2)_{\text{group}} \text{ fm}.$

JLab (similar results also from Ingo Sick)

 $\begin{array}{l} \langle r_E^2 \rangle^{1/2} &= 0.875 \pm 0.008_{\rm exp} \pm 0.006_{\rm fit} \ {\rm fm} \quad (3) \\ \langle r_M^2 \rangle^{1/2} &= 0.867 \pm 0.009_{\rm exp} \pm 0.018_{\rm fit} \ {\rm fm}, \quad (4) \end{array}$

• Charge radius:

FIG. 3: (Color online) The proton RMS charge radius from previous *ep* scattering analysis (Sick [40]), Mainz low Q^2 measurement (Bernauer *et al.* [37]) and this work compared to the CO-DATA [41] and muonic hydrogen spectroscopy (Pohl *et al.* [42]). The red dashed lines show the combined results from CODATA, Bernauer *et al.* and this work, while the black dotted lines show the Pohl *et al.* uncertainty.

Magnetic radius does not agree!

High Precision Measurement of the Proton Elastic Form Factor Ratio μ_pG_E/G_M at Low Q²
X. Zhan.^{1,2} K. Allada,³ D. S. Armstrong,⁴ J. Arrington,² W. Bertozzi,¹ W. Boeglin,⁵ J.-P. Chen,⁶ K. Chirapatpimol,⁷
S. Choi,⁸ E. Chudakov,⁶ E. Cisbani,^{9,10} P. Decowski,¹¹ C. Dutta,¹² S. Frullani,⁹ E. Fuchey,¹³ F. Garibaldi,⁹ S. Gilad,¹
R. Gilman,^{6,14} J. Glister,^{15,16} K. Hafidi,² B. Hahn,⁴ J.-O. Hansen,⁶ D. W. Higinbotham,⁶ T. Holmstrom,¹⁷ R. J. Holt,² J. Huang,¹ G. M. Huber,¹⁸ F. Itard,¹³ C. W. de Jager,⁶ X. Jiang,¹⁴ J. Johnson,¹⁹ J. Katich,⁴ R. de Leo,²⁰
J. J. LeRose,⁶ R. Lindgren,⁷ E. Long,²¹ D. J. Margaziotis,²² S. May–Tal Beck,²³ D. Meekins,⁶ R. Michaels,⁶
B. Mofitt,¹⁶ B. E. Norum,⁷ M. Olson,²⁴ E. Piasezky,²⁵ I. Pomerantz,²⁵ D. Protopopescu,²⁶ X. Qian,²⁷ Y. Qiang,^{27,6}
A. Rakhman,²⁸ R. D. Ransome,¹⁴ P. E. Reimer,² J. Reinhold,²⁹ S. Riordan,⁷ G. Ron,^{25,30} A. Saha,⁶ A. J. Satty,³¹
B. Sawatzky,^{6,32} E. C. Schulte,¹⁴ M. Shabestari,⁷ A. Shahinyan,³³ S.Širca,^{34, S. P.} Solvignon,^{2,6} N. F. Sparveris,^{1,32}
S. Strauch,⁵⁶ R. Subedi,⁷ V. Sulkosky,^{1,6} I. Viardi,²⁰ Y. Wang,³⁷ B. Wojtsekhowski,⁶ Z. Ye,³⁸ and Y. Zhang³⁹ (Jefferson Lab Hall A Collaboration)

• • Certainty of the derivatives

- △f/∆t we can find it in a model independent way if we have accurate data and an estimation of the higher-order Taylor terms.
- Data are roughly with 1%.
- R_p is wanted within 1%.
- We need fits!
- We can use fits only if we know the exact shape.

• • Certainty of the derivatives

- ∆f/∆t we can find it in a model independent way if we have
- Data are roughly with 1%.
- R_p is wanted within 1%.

Narrowing the area
increases the uncertainty:
e.g.:
Hill and Paz, 2010
Kraus et al., 2014We need fits!
We can use fits
only if we know
the exact shape.

• • • Certainty of the derivatives

ughly Fifty years: data improved (quality, quantity); •accuracy of radius stays the same; d •systematic effects: increasing complicity of the fit. estimation of the • We can use fits higher-order only if we know Taylor terms. the exact shape.

Analytic properties: is that important?

- The form factors are measured in a finite space-like region.
- The fits present the form factors for all the momenta.

- The form factors fits in time-like region are wrong.
- Their analytic properties are inappropriate.
- Their behavior at larger momenta is unreasonable.

Analytic properties: Dispersion fits' always produce smaller values of the radius, but usually they have bad χ².

Mergell et al., 1995; Belushkin et all, 2007, Lorenz et al., 2012; Adamuscin et al., 2012

Is it possible to produce a fit with a good value of χ^2 and consistent with our knowledge about the imaginary part ?

- The form factors are measured in a finite space-like region.
- The fits present the form factors for all the momenta.

- The form factors fits in time-like region are wrong.
- Their analytic properties are inappropriate.
- Their behavior at high momenta is unreasonable.

unreasonable.

• • • • Different methods to determine the proton charge radius

- spectroscopy of
 Comparison:
 hydrogen (and
 deuterium)
 Comparison:
- the Lamb shift in muonic hydrogen
- electron-proton scattering

FIG. 3: (Color online) The proton RMS charge radius from previous ep scattering analysis (Sick [40]), Mainz low Q^2 measurement (Bernauer *et al.* [37]) and this work compared to the CO-DATA [41] and muonic hydrogen spectroscopy (Pohl *et al.* [42]). The red dashed lines show the combined results from CODATA, Bernauer *et al.* and this work, while the black dotted lines show the Pohl *et al.* uncertainty.

Present status of proton radius: three convincing results

charge radius and the Rydberg constant: a strong discrepancy.

- If I would bet:
 - systematic effects in hydrogen and deuterium spectroscopy
 - error or underestimation of uncalculated terms in 1s Lamb shift theory
- Uncertainty and modelindependence of scattering results.

magnetic radius:

a strong discrepancy between different evaluation of the data and maybe between the data

Present status of proton radius: three convincing results

charge radius and the Rydberg constant: a strong discrepancy.

- If I would bet:
 - systematic effects in hydrogen and deuterium spectroscopy
 - error or underestimation of uncalculated terms in 1s Lamb shift theory
- Uncertainty and modelindependence of scattering results.

magnetic radius:

a strong discrepancy between different evaluation of the data and maybe between the data

••• What is next?

- new evaluations of scattering data (old and new)
- new spectroscopic experiments on hydrogen and deuterium
- evaluation of data on the Lamb shift in muonic deuterium (from PSI) and new value of the Rydberg constant
- systematic check on muonic hydrogen and deuterium theory

••• What's new?

• Hydrogen:

- A preliminary MPQ result on 2s-4p is consistent with µH.
- Muonic atoms:
 - μD is consistent with μH (PSI) + isotopic H-D 1s-2s (MPQ).

• Scattering data:

- Jlab's people and

 Sick state that
 world data and
 MAMI's are not
 quite consistent.
- More studies of different shapes (conformal mapping etc.)

• Scattering data:

- Jlab's people and
 I. Sick state that world data and
 MAMI's are not quite consistent.
- More studies of different shapes (conformal mapping etc.)

Precision physics and fundamental constants (FFK) Precision physics of simple atoms (PSAS)

Oct., 12-16, 2015 Budapest May, 22-26, 2016 Jerusalem