Recent progress in determination of fundamental constants (CODATA 2010-2014)

Savely G Karshenboim

Pulkovo observatory (FAO) (St. Petersburg) and Max-Planck-Institut für Quantenoptik ____(Garching)

Pulkovo Observatory

MAX-PLANCK-INSTITUTE OF QUANTUM OPTICS GARCHING Outline

- structure of input and output
- auxiliary data
 - Rydberg and R_p
 - m_e/m_p
- Δ
- h
- mass of a particle

- independent constants
 - G
 - k
 - (g-2)_µ
- progress: 2006 vs. 2010
- problems

Structure of the input data and output values

- Auxiliary data = exact + the most accurate data which are to be evaluated prior the adjustment: R_∞, m_e/m_p, atomic masses.
- α related data: h/m, hN_A...
- h related data: e, e/h, ...
- The lines (→) are equations: e.g., theoretical expressions for h/M, the Lamb shift, ...
- Some data are measured, a lot are derived: m_p [kg], m_e [Mev/c²], ...
- G is uncorrelated,...

Structure of the input data and output values

- Auxiliary data = exact + the most accurate data which are to be evaluated prior the adjustment: R_∞, m_e/m_p, atomic masses.
- α related data: h/m, hN_A ...
- h related data: e, e/h, N_A ...
- The lines (→) are equations: e.g., theoretical expressions for h/M, the Lamb shift, ...
- Some data are measured, a lot are derived: m_p [kg], m_e [Mev/c²], ...
- G is uncorrelated; k, a_{μ} , ...

Structure of the input data and output values

- Auxiliary data = exact + the most accurate data which are to be evaluated prior the adjustment: R_∞, m_e/m_p, atomic masses.
- α related data: h/m, hN_A ...
- h related data: e, e/h, N_A ...
- The lines (→) are equations: e.g., theoretical expressions for h/M, the Lamb shift, ...
- Some data are measured, a lot are derived: m_p [kg], m_e [Mev/c²], ...
- G is uncorrelated; k, a_µ, …

Auxiliary data					
•	exact:		the most a	accurate	
	Quantity	Symbol	Value	u_r	
	speed of light in vacuum magnetic constant electric constant atomic mass of ^{12}C	c μ_0 $\epsilon_0 = 1/(c^2\mu_0)$ $m(^{12}C)$	299 792 458 m s ⁻¹ $4\pi \times 10^{-7} \text{ N A}^{-2}$ 8.854 187 817 × 10 ⁻¹² F m ⁻¹ 12 u	exact exact exact exact	
	Rydberg constant proton-electron	R_∞	$10973731.568539(55)$ m $^{-1}$	$[5.0\times10^{-12}]$	
	mass ratio electron mass proton rms	${m_p/m_e\over m_e}$	$\begin{array}{l} 1836.152\ 672\ 45(75) \\ 5.485\ 799\ 0946(22) \times 10^{-4}\ \mathrm{u} \end{array}$	$\begin{matrix} [4.1 \times 10^{-10}] \\ [4.0 \times 10^{-10}] \end{matrix}$	
	charge radius	R_p	$0.8775(51)\times 10^{-15}\;{\rm m}$	$[5.9\times10^{-3}]$	

Example: multiplicative vs. additive: R_{∞} vs. α

equations:

- uncertainty:
 - R_∞ ~ 10⁻¹¹
 - α ~ 10-9 10-10

$$\alpha^2 \sim 10^{-4} \times 10^{-9}$$

 $c_1 R_\infty c + c_2 \alpha^2 R_\infty c = \nu$

 $\alpha^2 = R_\infty \frac{h}{m_e c}$

<pre>exact</pre>		the most accurate:	
Quantity	Symbol	Value	u_r
speed of light in vacuum magnetic constant	c μ_0 $1/(-2)$	299 792 458 m s ⁻¹ $4\pi \times 10^{-7}$ N A ⁻²	exact exact
atomic mass of ¹² C	$c_0 = 1/(c \ \mu_0)$ $m(^{12}C)$	8.854 187 817 × 10 ⁻¹² F m ⁻¹ 12 u	exact exact
Rydberg constant proton-electron	R_{∞}	$10973731.568539(55)~{ m m}^{-1}$	$[5.0 \times 10^{-1}]$
mass ratio	m_p/m_e	1836.15267245(75)	$[4.1 \times 10^{-1}]$
electron mass	m_e	$5.4857990946(22)\times 10^{-4}$ u	$[4.0 \times 10^{-1}]$
proton rms charge radius	R_p	$0.8775(51)\times 10^{-15}\;{\rm m}$	$[5.9 imes 10^{-1}]$

Auxiliary data					
exact		the most accurate:			
Quantity	Symbol	Value	u_r		
speed of light in vacuum magnetic constant electric constant atomic mass of ¹² C	c μ_0 $\epsilon_0 = 1/(c^2\mu_0)$ $m(^{12}C)$	299 792 458 m s ⁻¹ $4\pi \times 10^{-7} \text{ N A}^{-2}$ 8.854 187 817 × 10 ⁻¹² F m ⁻¹ 12 u	exact exact exact exact		
Rydberg constant proton-electron mass ratio electron mass	R_{∞} m_p/m_e m_e	$\begin{array}{l} 10973731.568539(55)\mathrm{m^{-1}}\\ \\ 1836.15267245(75)\\ \\ 5.4857990946(22)\times10^{-4}\mathrm{u} \end{array}$	$[5.0 \times 10^{-12}]$ $[4.1 \times 10^{-10}]$ $[4.0 \times 10^{-10}]$		
charge radius	R_p	$0.8775(51)\times 10^{-15}\;{\rm m}$	$[5.9 imes 10^{-3}]$		

Auxiliary data				
exact		the most accurate:		
Quantity	Symbol	Value	u_r	
speed of light in vacuum magnetic constant electric constant atomic mass of ^{12}C	c μ_0 $\epsilon_0 = 1/(c^2\mu_0)$ $m(^{12}C)$	299 792 458 m s ⁻¹ $4\pi \times 10^{-7} \text{ N A}^{-2}$ 8.854 187 817 × 10 ⁻¹² F m ⁻¹² 12 u	exact exact ¹ exact exact	
Rydberg constant proton-electron mass ratio electron mass	R_{∞} m_p/m_e m_e	$\begin{array}{l} 10973731.568539(55)\mathrm{m^{-1}}\\ \\ 1836.15267245(75)\\ \\ 5.4857990946(22)\times10^{-4}\mathrm{u} \end{array}$	$[5.0 \times 10^{-12}]$ $[4.1 \times 10^{-10}]$ $[4.0 \times 10^{-10}]$	
charge radius	R_p	$0.8775(51)\times 10^{-15}~{\rm m}$	$[5.9 \times 10^{-3}]$	

Atomic & nuclear masses

Quantity	Symbol	Value	u_r
atomic mass of ${}^{16}O$ atomic mass of ${}^{28}Si$ atomic mass of ${}^{87}Rb$	$m(^{16}\text{O})$ $m(^{28}\text{Si})$ $m(^{87}\text{Rb})$	$\begin{array}{c} 15.99491461957(18)\mathrm{u}\\ 27.97692653496(62)\mathrm{u}\\ 86.909180535(10)\mathrm{u} \end{array}$	$[1.1 \times 10^{-11}] \\ [2.2 \times 10^{-11}] \\ [1.2 \times 10^{-10}]$

Quantity	Symbol	Value	u_r
proton mass	m_p	1.007276466812(90)u	$[8.9 \times 10^{-11}]$
deuteron mass	m_d	2.013553212712(77) u	$[3.8 \times 10^{-11}]$
triton mass	m_t	3.0155007134(25)u	$[8.2 \times 10^{-10}]$
helion mass	m_h	3.0149322468(25)u	$[8.3 \times 10^{-10}]$
alpha particle mass	m_{lpha}	4.001506179125(62)u	$[1.5 \times 10^{-11}]$

- hydrogen & deuterium spectroscopy
- electron-proton elastic scattering
- Lamb shift in muonic hydrogen

- hydrogen & deuterium spectroscopy
- electron-proton elastic scattering
- Lamb shift in muonic hydrogen

 LKP (Paris), MPQ (Garching),...

- hydrogen & deuterium spectroscopy
- electron-proton elastic scattering
- Lamb shift in muonic hydrogen

- MAMI = Mainzer Mikrotron
- old world data

- hydrogen & deuterium spectroscopy
- electron-proton elastic scattering
- Lamb shift in muonic hydrogen

 CREMA collaboration @ PSI

Spectroscopy of hydrogen (and deuterium)

Two-photon s involves a	pectroscopy number of	by The idea is based on theoretical study of	
levels stroi by QED. In "old good to to deal onl Lamb shift	ngly affecte time" we ha y with 2s	d $\Delta(2) = L_{1s} - 2^3 \times L_{2s}$ which we understand much better since any short distance effect vanishes for $\Delta(2)$.	
Theory for p states is simple since the side of the si		Theory of p and d states is	
		hydrogen atom	
		sian Metrology Research Institute, 198005 St. Petersburg, Russia 1994) z. 106 , 414–424 (August 1994)	
Z. Phys. D 39, 109–113 (1997)	A theoretical expression	on is derived for the difference $\Delta E_{\rm L}(1s_{1/2}) - 8\Delta E_{\rm L}(2s_{1/2})$ in Lamb shifts R_{∞}	
The Lamb shift of excited S-levels in hydrogen Savely G. Karshenboim*	and deuterium atoms		

The Lamb shift in muonic hydrogen: experiment

Figure 4 | **Summed X-ray time spectra**. Spectra were recorded on resonance (**a**) and off resonance (**b**). The laser light illuminates the muonic atoms in the laser time window $t \in [0.887, 0.962] \mu$ s indicated in red. The 'prompt' X-rays are marked in blue (see text and Fig. 1). Inset, plots showing complete data; total number of events are shown.

The Lamb shift in muonic hydrogen: experiment

Figure 5 | **Resonance.** Filled blue circles, number of events in the laser time window normalized to the number of 'prompt' events as a function of the laser frequency. The fit (red) is a Lorentzian on top of a flat background, and gives a χ^2 /d.f. of 28.1/28. The predictions for the line position using the proton radius from CODATA³ or electron scattering^{1,2} are indicated (yellow data points, top left). Our result is also shown ('our value'). All error bars are the ±1 s.d. regions. One of the calibration measurements using water absorption is also shown (black filled circles, green line).

Proton radius puzzle

4e) Proton Radius from e – p scattering

Anington and Sick fm : TGFC medingstler

- World w/o Mainz: 0.887(8)
- Jlab: 0.875(10)
 - Simple average: 0.881(11)
- Mod. Mainz: 0.875(15)
 - Weighted mean: 0.879(11)

- Mainz spline: 0.8750(67)
- Mainz poly: 0.8830(77)
- World w/o Mainz: 0.887(8)
 - Jlab: 0.875(10)
 - Weighted mean: 0.880(11)

Average value and uncertainty: 0.879(11)

electron-to-proton mass ratio

- cyclotron frequencies of e & p (UWash)
- g factor of a bound e in H-like ion (magnetic moment precession vs. ion cyclotron frequency)
 @ Mainz
- antiprotonic He spectroscopy (ASACUSA @ CERN)

LETTER

Direct high-precision measurement of the magnetic moment of the proton

A. Mooser^{1,2}[†], S. Ulmer³, K. Blaum⁴, K. Franke^{3,4}, H. Kracke^{1,2}, C. Leiteritz¹, W. Quint^{5,6}, C. C. Rodegheri^{1,4}, C. Smorra³ & J. Walz^{1,2}

α block

equations:

$$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$$

- Δ
- h/m_e

 α block

equations:

$$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$$

m_e/m_p

- input data
 - Δ
 - h/m_e
 - h/mp

 α block

equations:

$$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$$

- m_e/m_p
- m_p in u
- m_{at} in u

- input data
 - Δ
 - h/m_e
 - h/mp
 - h/m_{at}

equations:

 α block

$$m(^{12}C)/12 \cdot N_A = 1 \text{ g mol}^{-1}$$

- m_e/m_p
- m_p in u
- m_{at} in u

- input data
 - α
 - h/m_e
 - h/m_p
 - h/m_{at}
- output
 h·N_A

$$\frac{mc^2}{h} = \frac{1}{\left(h \cdot N_A\right)} \times \frac{m}{m(^{12}\mathrm{C})/12} \times c^2 \times \left(m(^{12}\mathrm{C})/12 \cdot N_A\right)$$

equations:

 α block

$$m(^{12}C)/12 \cdot N_A = 1 \text{ g mol}^{-1}$$

- m_e/m_p
- m_p in u
- m_{at} in u

- input data
 - α
 - h/m_e
 - h/m_p
 - h/m_{at}
- output
 h·N₄

α block

.

Quantity	Symbol	Value	u_r
inverse fine			
structure constant	α^{-1}	137.035999074(44)	$[3.2 \times 10^{-10}]$
molar Planck constant	$h \cdot N_A$	$3.9903127176(28) \times 10^{-10} \mathrm{Jsmol^{-1}}$	$[7.0 \times 10^{-10}]$
quantum of circulation	$h/(2m_e)$	$3.6369475520(24) imes 10^{-4} \mathrm{m^{2}s^{-1}}$	$[6.5 \times 10^{-10}]$
Compton wavelength	$\lambda_{\rm C} = h/(m_e c)$	$2.4263102389(16) imes 10^{-12} { m m}$	$[6.5 \times 10^{-10}]$
von Klitzing constant	$R_K = h/e^2$	$25812.8074434(84)\ \Omega$	$[3.2 \times 10^{-10}]$
muon-electron mass ratio	m_μ/m_e	206.7682843(52)	$[2.5 \times 10^{-8}]$

α block

- QED vs. Penning trap: a_e
- recoil spectroscopy
 - h/m_{Rb}
 - h/m_{Cs}
- quatum Hall standard vs calculable capacitor: R_K

- QED vs Penning trap: a_e
- recoil spectroscopy
 - h/m_{Rb}
 - h/m_{Cs}

 α^{-1}

m_e/m_p vs α: accuracy is close!

α block

- QED vs. Penning trap: a_e
- recoil spectroscopy
 - h/m_{Rb}
 - h/m_{Cs}
- quatum Hall standard vs calculable capacitor: R_K

2014 Input data related to the Fine-structure constant: TGFC meeting

Quantum Hall effect and a standard of resistance

 $R_H = R_K \equiv h/e^2$

h block known from α block • input: • h $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c}$ • e N_A output h·N_A m_e h/m_e μ_B

h block

Quantity	Symbol	Value	u_r
Planck constant	h	$6.62606957(29) imes 10^{-34}~{ m Js}$	$[4.4 \times 10^{-8}]$
elementary charge	e	$1.602176565(35) imes10^{-19}~{ m C}$	$[2.2 \times 10^{-8}]$
Avogadro constant	N_A	$6.02214129(27) imes 10^{23}\;{ m mol}^{-1}$	$[4.4 \times 10^{-8}]$
Faraday constant	$F = e \cdot N_A$	$96485.3365(21)\mathrm{Cmol^{-1}}$	$[2.2 \times 10^{-8}]$
electron charge to			
mass quotient	e/m_e	$1.758820088(39) imes10^{11}~{ m Ckg^{-1}}$	$[2.2 \times 10^{-8}]$
electron			
gyromagnetic ratio	$\gamma_e = 2\mu_e/\hbar$	$1.760859708(39) imes10^{11}~{ m s}^{-1}{ m T}^{-1}$	$[2.2\times10^{-8}]$
electron mass	m_e	$9.10938291(40) imes10^{-31}~{ m kg}$	$[4.4\times10^{-8}]$
		$0.510998928(11)~{ m MeV}/c^2$	$[2.2 \times 10^{-8}]$
proton mass	m_p	$1.672621777(74) imes 10^{-27}~{ m kg}$	$[4.4 \times 10^{-8}]$
		$938.272046(21)~{ m MeV}/c^2$	$[2.2 \times 10^{-8}]$
Bohr magneton	$\mu_B = e\hbar/2m_e$	$927.400968(20) imes 10^{-26} \ { m J} { m T}^{-1}$	$[2.2 \times 10^{-8}]$
nuclear magneton	$\mu_N = e\hbar/2m_p$	$5.05078353(11) imes10^{-27}~{ m JT^{-1}}$	$[2.2 \times 10^{-8}]$
Josephson constant	$K_J = 2e/h$	$483597.870(11) imes 10^9\mathrm{Hz}\mathrm{V}^{-1}$	$[2.2 \times 10^{-8}]$

h block: the most important data

h block: the most important data

- watt ballance
- Avogadro constant from ehrhiched Si

watt-ballance

WB Principle (1): static phase / weighing mode

WB Principle (2): dynamic phase / velocity mode

WB Principle (3): combination of modes

B. Jeanneret, Les Houches, 200

Josephson effect and quantum volt stardar

- Irradiation with microwave:
- Cooper pairs synchronize
- with radiation
- Voltage steps appear

Shapiro step, 1963

V1~145 μV @ 70 GHz

B. Jeanneret, Les Houches, 200

h block: the most important data

- watt ballance
- Avogadro constant from ehrhiched Si

monocrystale ~ 1 kg

isotopic composition

- 28Si: 92%
- 29Si: 5%
- ³⁰Si: 3%

monocrystale ~ 1 kg

isotopic composition

- ²⁸Si: 92%
 99.9<u>85%</u>
- 29Si: 5%
- ³⁰Si: 3%

monocrystale ~ 1

isotopic composition

28Si: <u>92%</u>
99.9<u>85%</u>

■ ³⁰Si: 3%

- isotopic composition
- ²⁸Si: 92%
 99.9<u>85%</u>
- 29Si: 5%
- ³⁰Si: 3%

monocrystale ~ 1 isotopic

h block: the most important data

- watt ballance
- Avogadro constant from ehrhiched Si

problem remains

h block: the most important data

- watt ballance
- Avogadro constant from

2014 Input data related to the Planck constant: TGFC meeting

Sphere repolishing

- The AVO28-S5 and AVO28-S8 spheres have been repolished at PTB.
- Surface metallic layers (Ni and Cu) were near-completely removed.

 $v)_{diameter} = 69 \text{ nm}$

Sphere surface

The spheres were repolished: the metal contamination was removed, but the surface layer has been changed.

Topography of the SiO₂ thickness

x-ray fluorescence gravimetry x-ray reflectometry, x-ray fluorescence spectral ellipsometry

Model of the surface layers and measurement techniques

Spectral ellipsometer at the NMIJ

Extraordinary calibration and sphere mass

Mass in vacuum m/g

S5

S5c

2014

Planck constant (2015)

Planck constant $h / (10^{-34} \text{ J s})$

Mass of a proton in different units

Symbol	Value	u_r
$m_p \ m_p$	$1.007276466812(90)$ u 1836.152 $67245(75)~m_e$	$[8.9 \times 10^{-11}] \\ [4.1 \times 10^{-10}]$
$m_p c^2/h$	$2.2687318139(16) \times 10^{23} { m ~Hz}$	$[7.1 \times 10^{-10}]$
$\frac{m_p c^2}{m_p}$	938.272 046(21) MeV 1.672 621 777(74) × 10 ⁻²⁷ kg	$[2.2 \times 10^{-8}] \\ [4.4 \times 10^{-8}]$

auxiliary data

Mass of a proton in different units

α block

Mass of a proton in different units

Symbol	Value	u_r
m_p	1.007276466812(90)u	$[8.9 \times 10^{-11}]$
m_p	$1836.15267245(75)m_e$	$[4.1 \times 10^{-10}]$
$m_p c^2/h$	$2.2687318139(16) imes10^{23}~{ m Hz}$	$[7.1 \times 10^{-10}]$
$m_p c^2$	938.272046(21) MeV	$[2.2 \times 10^{-8}]$
m_p	$1.672621777(74) \times 10^{-27} \text{ kg}$	$[4.4 \times 10^{-8}]$
h b	lock	

Independent constants

_

Quantity	Symbol	Value	u_r
Newtonian constant of gravitation Planck mass	G $m_P = \sqrt{\hbar c/G}$	$\begin{array}{l} 6.67384(80)\times10^{-11}~{\rm m}^3{\rm s}^{-2}{\rm kg}^{-1}\\ 2.17651(13)\times10^{-8}~{\rm kg} \end{array}$	$[1.2 \times 10^{-4}] \\ [6.0 \times 10^{-5}]$
Boltzmann constant molar gas constant Stefan-Boltzmann	$k = k N_A$	$\begin{array}{l} 1.3806488(13)\times10^{-23}~{\rm JK^{-1}}\\ 8.3144621(75)~{\rm JK^{-1}mol^{-1}} \end{array}$	$[9.1 \times 10^{-7}] \\ [9.1 \times 10^{-7}]$
constant	$\sigma = (\pi^2/60)(k^4/\hbar^3 c^2)$	$5.670373(21) \times 10^{-8} \mathrm{Wm^{-2}K^{-4}}$	$[3.6 \times 10^{-6}]$
anomalous magnetic moment of muon	a_{μ}	$1.16592091(63) \times 10^{-3}$	$[5.4 \times 10^{-7}]$
$GM_{\odot} = 1.327\,124\,4210(1) \times 10^{20} \,\mathrm{m^3 s^{-2}} \quad \bullet \quad \delta G/G \sim 10^{-4}$

$$\begin{split} GM_{\oplus} &= 3.986\,004\,418(8) \times 10^{14} \text{ m}^3 \text{s}^{-2} & M_{\odot} &= 1.988\,55(24) \times 10^{30} \text{ kg} \\ \hline \text{IESR, 2010} & M_{\oplus} &= 5.972\,58(72) \times 10^{24} \text{ kg} \end{split}$$

$\mathrm{PSR}~\mathrm{J0737}\text{-}\mathrm{3039/A/B}$

 $M_m = 1.3381(7) \ M_{\odot} = 2.6609(14) \times 10^{30} \ \text{kg}$ $M_p = 1.2489(7) \ M_{\odot} = 2.4835(14) \times 10^{30} \ \text{kg}$

Kramer et al., 2006

 $T_{\rm CMB} = 2.725\,48(57)\,K$

Fixsen, 2009: COBE

4b) 2014 Input data related to the Boltzmann constant: TGFC meeting

"Improving acoustic determinations of the Boltzmann constant with mass spectrometer measurements of the molar mass of argon,"

I. Yang, L. Pitre, M. R. Moldover, J. Zhang, X. Feng, and J. S. Kim1, Metrologia, available online November 2015

$k = 1.380 \ 648 \ 52(79) \times 10^{-23} \ J \ K^{-1}$ [5.7 × 10⁻⁷]

Independent constants: a_u

QED is not a problem

hadronic effects

Independent constants: a_u

Year

Year

Quantity	$u_r(2006)$	Δ	$\Delta/u_r(2006)$	$u_r(2010)$	$u_r(2010)/u_r(2006)$
R_{∞}	6.6×10^{-12}	1.1×10^{-12}	0.17	5.0×10^{-12}	0.76
m_e/m_p	4.3×10^{-10}	0.1×10^{-10}	0.03	4.1×10^{-10}	0.95
α	6.8×10^{-10}	44.2×10^{-10}	6.50	3.2×10^{-10}	0.47
h	5.0×10^{-8}	9.2×10^{-8}	1.84	4.4×10^{-8}	0.88
k	1.7×10^{-6}	-1.2×10^{-6}	-0.68	9.1×10^{-7}	0.53
G	1.0×10^{-4}	-0.7×10^{-4}	-0.66	1.2×10^{-4}	1.2

Quantity	$u_r(2006)$	Δ	$\Delta/u_r(2006)$	$u_r(2010)$	$u_r(2010)/u_r(2006)$
R_{∞}	$6.6 imes 10^{-12}$	1.1×10^{-12}	0.17	5.0×10^{-12}	0.76
m_e/m_p	4.3×10^{-10}	0.1×10^{-10}	- 0.93	4.1×10^{-10}	0.95
lpha	6.8×10^{-10}	44.2×10^{-10}	6.50	3.2×10^{-10}	0.47
h	5.0×10^{-8}	9.2×10^{-8}	1.84	4.4×10^{-8}	0.88
k	1.7×10^{-6}	-1.2×10^{-6}	-0.68	9.1×10^{-7}	-0.53
G	1.0×10^{-4}	-0.7×10^{-4}	-0.66	1.2×10^{-4}	1.2

- R_{∞} & R_{p}
- m_e/m_p
- α
- h
- G
- k
- a_μ

• R_{∞} & R_{p}

• m /m

- + better accuracy in scattering
- + new method for R_p
- discrepancy in data

- R_{∞} & R_{p}
- m_e/m_p
- Ω
- h
- G
- k
- a_μ

+ slow progress in two methods
+ no discrepancies

overlap with $\boldsymbol{\alpha}$ data

- R_{∞} & R_{p}
- m_e/m_p
- Ω
- h
- G
- k
- a_μ

- + better accuracy
- + two methods
- + sensitivity to 5 loops

– 6-sigma jump

- R_{∞} & R_{p}
- m_e/m_p
- N
- h
- G
- k
- a_μ

+ natural-silicon
 discrepacy resolved
 + better accuracy for
 Avodagro

- new discrepancy

 $\mathsf{NPL}\to\mathsf{NRC}$

+ natural-silicon
 discrepacy resolved
 + better accuracy for
 Avodagro

- new discrepancy

 $NPL \rightarrow NRC$

- R_{∞} & R_{p}
- m_e/m_p
- N I
- h
- G
- k
- a_μ

+ more accurate results

bigger scatter

- R_{∞} & R_{p}
- m_e/m_p
- S C
- h
- G
- k
- a_μ

- + more accurate results
- + more methods
- + efforts for atomic/molecular spectroscopy

- R_{∞} & R_{p}
- m_e/m_p
- N
- h
- G
- k
- a_μ

- still a discrepancy between $e^+e^- \& \tau$
- still a disagreement of theory and experiment

CODATA Recommended Values of the Fundamental Physical Constants: 2010^{*}

Peter J. Mohr[†], Barry N. Taylor[‡], and David B. Newell[§],

National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420, USA

*This report was prepared by the authors under the auspices of the CODATA Task Group on Fundamental Constants. The members of the task group are:

- F. Cabiati, Istituto Nazionale di Ricerca Metrologica, Italy
- J. Fischer, Physikalisch-Technische Bundesanstalt, Germany
- J. Flowers, National Physical Laboratory, United Kingdom
- K. Fujii, National Metrology Institute of Japan, Japan
- S. G. Karshenboim, Pulkovo Observatory, Russian Federation
- P. J. Mohr, National Institute of Standards and Technology, United States of America
- D. B. Newell, National Institute of Standards and Technology, United States of America
- F. Nez, Laboratoire Kastler-Brossel, France
- K. Pachucki, University of Warsaw, Poland
- T. J. Quinn, Bureau international des poids et mesures
- B. N. Taylor, National Institute of Standards and Technology, United States of America
- B. M. Wood, National Research Council, Canada
- Z. Zhang, National Institute of Metrology, China (People's Republic of)

Towards a quantum SI system

- the ampere to be defined via a fixed value of e
- the kilogram to be defined via a fixed value of h
- the kelvin it to be defined via a fixed value of k

 to be reproduced from ohm (quantum Hall effect) and volt (Josephson effect)

 to be reproduced with watt
 balances and
 Avogadro spheres

Conditions from CCM Recommendation G1 (2013)