

Mechanics ServiceFacilities and Tech Heritage

Mechanics Service

Gran Sasso National Laboratory – LNGS

Mechanical Workshop Department

Design and Additive Manufacturing
Department

Organization

Gran Sasso National Laboratory – LNGS

Responsible: Donato Orlandi

Workshop Department

Responsible: Angelo Corsi

Design and Additive Manufacturing Department

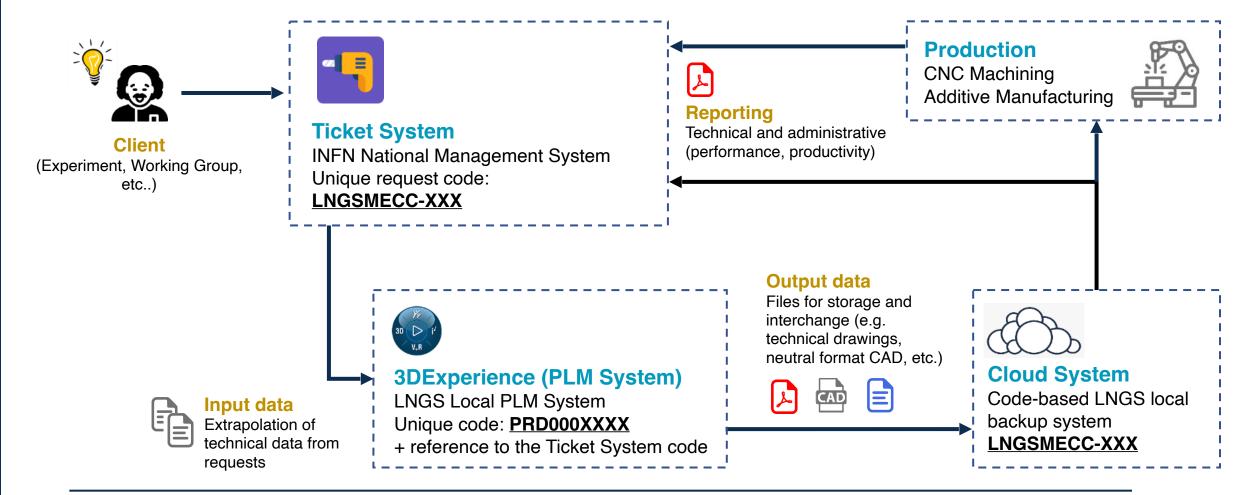
Responsible: Donato Orlandi Activities Ref: Daniele Cortis

Main activities

Traditional machining, CNC, quality control

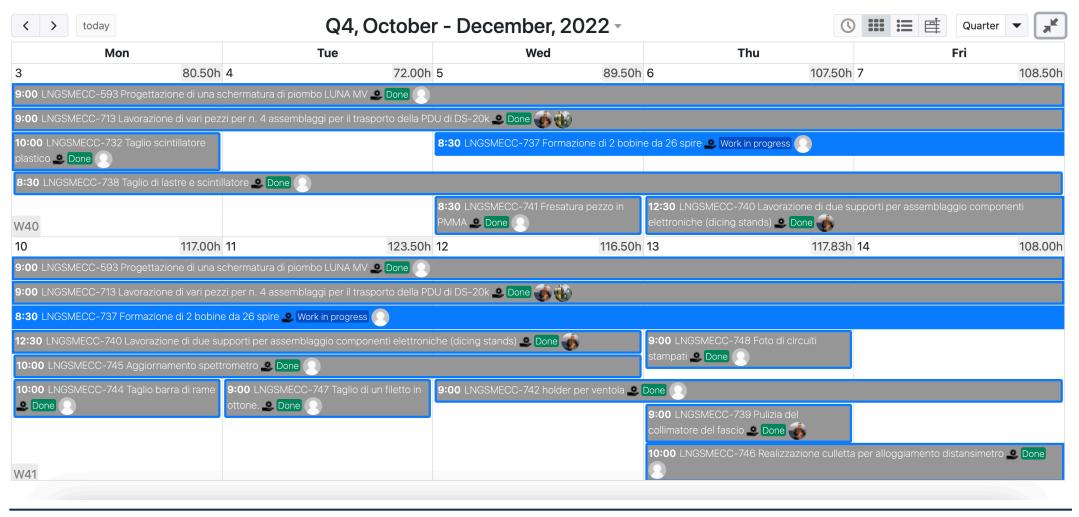
Main activities

Design, multi-physics simulations (FEA / CFD), additive manufacturing with plastic and metal materials, reverse engineering, technology transfer, research and analysis on materials.



Working Flow

Gran Sasso National Laboratory – LNGS



Ticketing Calendar

Technologies and equipment (AM)

LNGS DO SERVICE

Gran Sasso National Laboratory – LNGS

Realization of the components is realized by classic subtractive technologies (CNC) and by machines for additive manufacturing for plastic and metal materials (Additive Manufacturing).

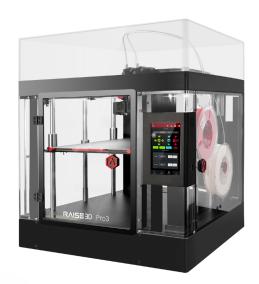
SISMA L-PBF (SLM)

3DSYSTEMS PoliJet

ENVISIONTEC SLA

ENVISIONTEC DPL

Technologies and equipment (AM)


LNGS MECHANICS DO SERVICE

Gran Sasso National Laboratory – LNGS

Realization of mechanical components by additive manufacturing for plastic and metals

PRIMA
L-PBF IR Laser (SLM)

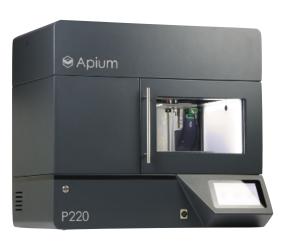
RAISE3D General purpose plastics FDM

PRIMA
L-PBF GREEN LASER (SLM)

Technologies and equipment (AM)

LNGS DO SERVICE

Gran Sasso National Laboratory – LNGS


The service is constantly evolving to get the highest level in terms of technology frontiers

Atomizer of metal powders for L-PBF

Traction machine with climatic chamber (-150°C/+600°C)

PEEK/Carbon Filled PEEK, Ultem FDM

Technologies and equipment

LNGS MECHANICS DO SERVICE

Gran Sasso National Laboratory – LNGS

Metal Additive Manufacturing

Similar to all other processes, metal additive manufacturing machines produce objects by adding material one layer at a time.

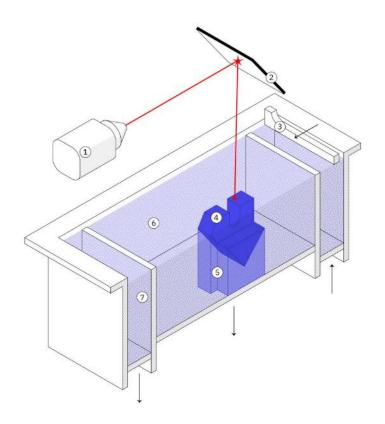
In this way it is possible to build objects with geometries that are impossible to produce with "traditional" subtractive (CNC) or training (Metal Casting) technologies, without the need for specialized equipment (for example a mold).

Technology available at LNGS:

Laser Powder Bed Fusion (L-PBF): Selective Laser Melting (SLM)

Technologies and equipment

Gran Sasso National Laboratory – LNGS



SLM (Selective Laser Melting)

SLM technology uses a laser beam to selectively melt a powder bed in order to produce a layer-by-layer component as schematically represented in the figure.

A layer of metal powder is deposited on a construction platform through the use of a recoater characterized by a ceramic, steel or rubber blade according to the type of metal powder used.

The melting of the powders is carried out with a high-power laser beam guided in the construction plan through appropriate galvanometric mirrors and the entire process takes place in a controlled atmosphere of inert gases such as Ar or N.

Processed materials

The materials that can be used by the machine are Steel, Titanium alloys, Nickel alloys, Aluminum alloys, Copper alloys, precious metal alloys and Cobalt Chrome alloys.

Materials currently processed at LNGS:

Steel	Aluminium alloys	Copper Alloys	Copper
AISI 316 L	SCALMALLOY®	CuCrZr	Cu > 99.8 %
	AlSi10Mg		Cu OFE

Quality analysis

Gran Sasso National Laboratory – LNGS

In addition, tools are available for the quality analysis of the components produced and reverse engineering (e.g. 4K high-resolution optical microscope, GOM 3D scanner, high-resolution optical profile meter).

GOM Atos Core 185

KEYENCE VHX-7000

KEYENCE IM series

HAMMER

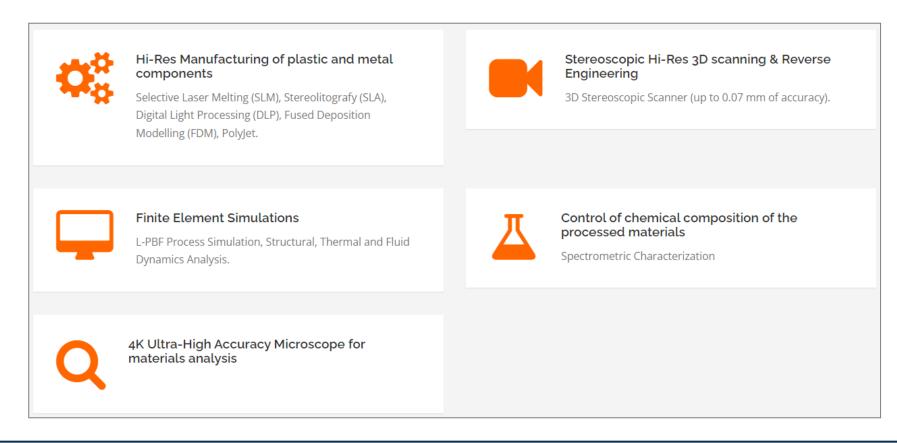
LNGS DO SERVICE

Gran Sasso National Laboratory – LNGS

HAMMER - Hub for Additive Manufacturing, Materials Engineering and Research

The Hub focuses on the design and production of complex components for both nuclear/astroparticular physics research and technology transfer.

https://hammer.lngs.infn.it/



HAMMER

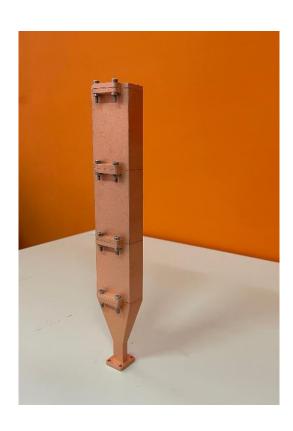
Gran Sasso National Laboratory – LNGS

HAMMER - Hub for Additive Manufacturing, Materials Engineering and Research

[LNGS: CROSS/DS20K] Production of PDU Transportation Assemblies

Components made:

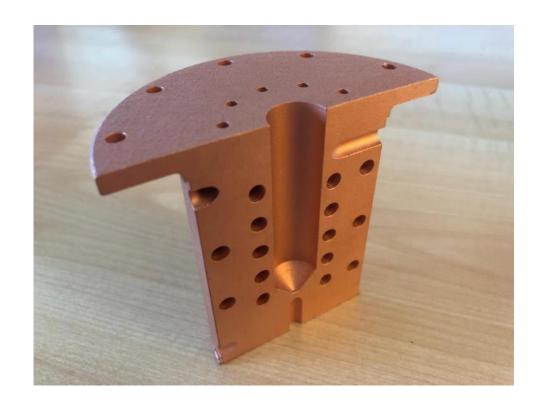
- Black PEN Holders
- Aluminum Frames
- Installation@LSC


Components made:

- Hi-Res Condenser
- ASTM 316L
- Vacuum Tight Weldings

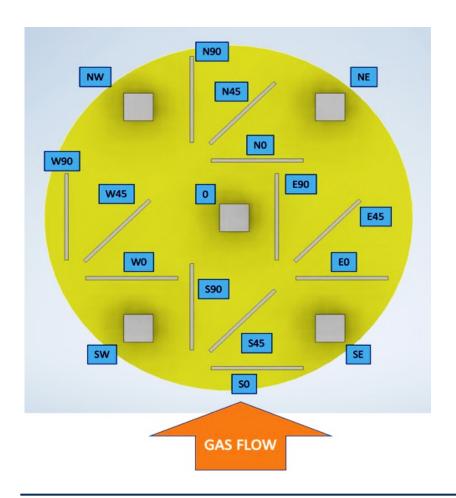
LNGS MECHANICS DO SERVICE

[LNGS: PTOLEMY] Design and production of waveguides


Design requirements:

- Vacuum component
- Cryogenic conditions
- High precision mechanical coupling
- Material:
- Cu OFE

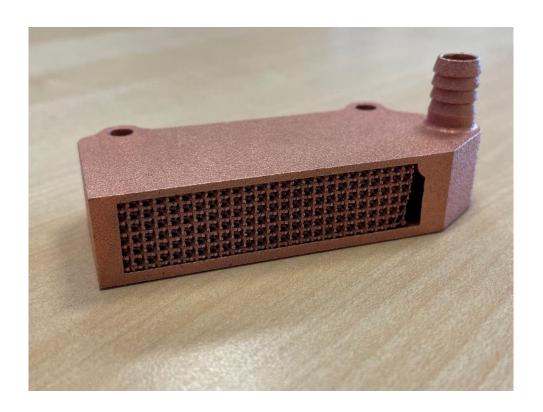
[LNGS: ADM2021 Conference] Design of Ar – N Condenser



Design requirements:

- Vacuum component
- Cryogenic conditions
- Material:
- Cu > 99.8%

[HAMMER: LNGS - RM1] Collaborative research SIAD-SEAMTHESIS



Objectives:

- Evaluate the effects of inert gas flow
- Evaluate the effects of the type of inert gas (N, Ar, He)
- Material:
- Cu > 99.8%

[LNGS: Koral Technologies] Collaborative research of lattice structures

Objectives:

 Development of innovative heat exchangers with lattice structures for electronics

Material:

CuCrZr

[LNGS: UNIVAQ] Characterization of mechanical property CuCrZr

Objectives:

 Study and characterization of the mechanical, static and dynamic properties (strain-rate), of the CuCrZr copper alloy produced by SLM, with and without heat treatment

Materials:

CuCrZr

[LNGS: OMA-FaVRIA] Commissioned research

Objectives:

 Design for Additive Manufacturing (optimization) of aeronautical components and their realization

Material:

Aluminum Alloy (SCALMALLOY®)

[LNGS: OMA-FaVRIA] Commissioned research

Components made:

N.3 hydraulic valves with optimized channels via CFD analysis

N.3 **electromechanical actuators** optimized by topological optimization

- Complementary activities:
- Static and fatigue characterization tests

Spectrometric characterization

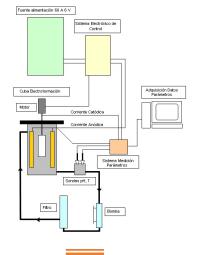
Dimensional checks

Cryogenic tests

[LNGS: UNIROMA1] Study of the realization of multimaterial components

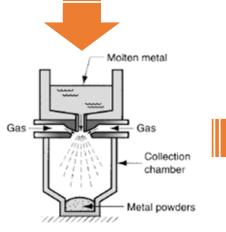
Objectives:

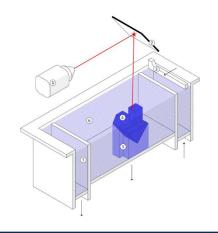
 Study of the realization of multi-material components using SLM technology


Material:

Steel AISI 316L / CuCrZr

[LNGS & LSC] Innovative hybrid process based on EF/Atomization/SLM

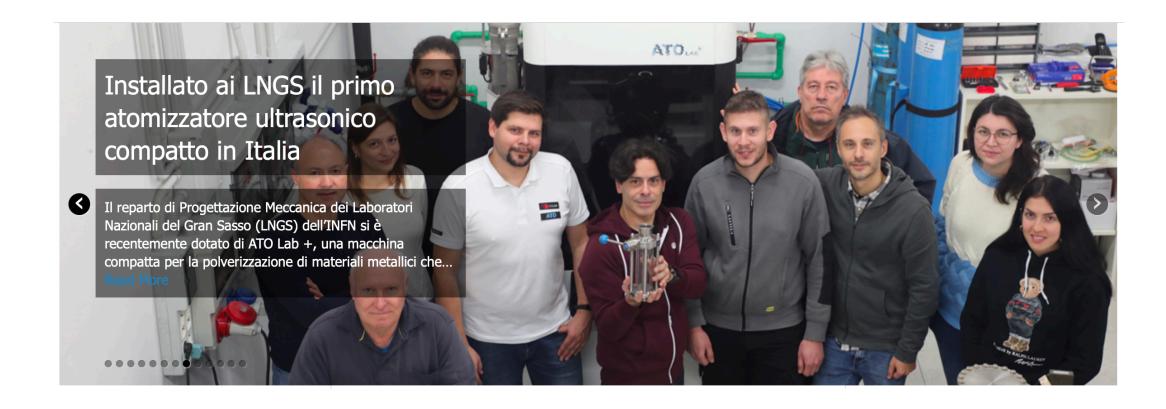


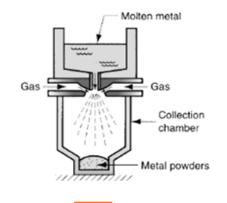

Objectives:

- Realization of complex components using SLM technology
- By atomizing Electro-formed Copper

Material:

EF Copper from LSC

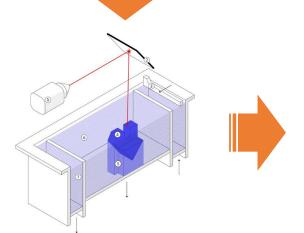


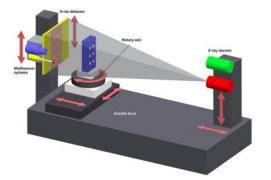

[LNGS] Innovative hybrid process based on Atomization/SLM

National Project SISMA

LNGS MECHANICS DO

[MISTER] Innovative Cu and Al Alloys by Atomization/SLM




Objectives:

- Characterization of new alloys by SLM technology
- Quality Analysis by Industrial Tomography
- Scientific and Technological Demonstrators

Materials:

Copper and Aluminum Alloys

P onT ecorvo
O bservatory for
L ight,
E arly-universe,
M assive-neutrino
Y ield

Collaborations&Projects

Gran Sasso National Laboratory – LNGS

Bundesministerium für Bildung und Forschung

Publications (2022)

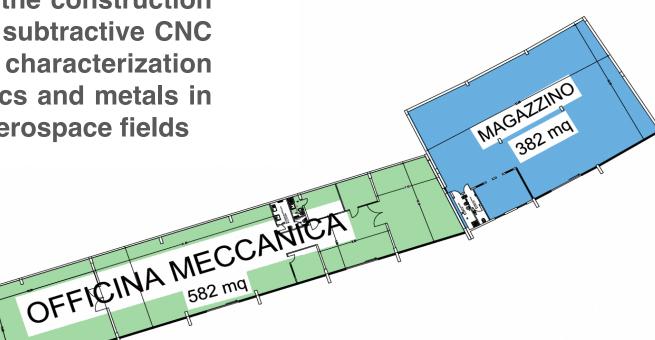
Gran Sasso National Laboratory – LNGS

Conferences Articles

- 1) D. Cortis, E. Mancini, S. Nisi, D. Orlandi, P. Di Stefano., M. Utzeri, M. Sasso. Compression Tests at High Strain Rate on 3D-Printed CuCrZr Alloy Specimens Material Model Calibration. Proceedings of ICIPE 22 Edition, Journal of Physics Conference Series JPCS.
- 2) M. Sasso, E. Mancini, M. Utzeri, G. Chiappini, **D. Cortis, D. Orlandi**, L. Di Angelo. *High strain rate behavior of 3D printed CuCrZr*. Proceedings of the 2022 SEM Annual Conference and Exposition on Experimental and Applied Mechanics.
- 3) M. Sasso, E. Mancini, M. Utzeri, G. Chiappini, **D. Cortis, D. Orlandi**, L. Di Angelo. *Comportamento dinamico a trazione di una lega di rame ottenuta da stampa 3D*. Atto di convegno, AIAS2022, Società Scientifica Italiana di Progettazione Meccanica e Costruzione di Macchine.
- 4) D. Orlandi, D. Cortis. Metal Additive Manufacturing at INFN-LNGS Laboratory: Facilities, Testing and Future Capabilities. Proceedings of LRT Conference 2022.
- 5) D. Cortis, A. Lalli, D. Orlandi. Additive Manufacturing Design of an Argon Condenser made with Pure Copper Powder for High-Purity Physics Applications: Technological Issues. Lecture Notes in Mechanical Engineering: Design Tools and Methods in Industrial Engineering II, Proceedings of the Second International Conference on Design Tools and Methods in Industrial Engineering, ADM 2021, September 9–10, 2021, Rome, Italy.
- 6) I. Rago, M Iannone, F. Marra, M.P. Bracciale, L. Paglia, **D. Orlandi**, **D. Cortis**, V. Pettinacci. *3D Printed Pure Copper Density and Thermal Treatments Effects*. Lecture Notes in Mechanical Engineering: Design Tools and Methods in Industrial Engineering II, Proceedings of the Second International Conference on Design Tools and Methods in Industrial Engineering, ADM 2021, September 9–10, 2021, Rome, Italy.

Journal Articles

- 7) D. Cortis, F. Campana, D. Orlandi, S. Sansone, "Strength and fatigue behaviour assessment of the SCALMALLOY® material to functionally adapt the performance of L-PBF components within CAE simulations". Progress in Additive Manufacturing, Springer, 2022.
- 8) I. Caravella, D. Cortis, L. Di Angelo, D. Orlandi. "Experimental analysis of the effect of SLM process parameters 2 on the surface quality of CuCrZr manufactured specimens". Material Journal, MPDI, 2022.



Mechanics Facility

Gran Sasso National Laboratory – LNGS

More than 700mq dedicated to the construction of mechanical components via subtractive CNC and additive manufacturing, characterization and testing of innovative plastics and metals in the scientific, automotive and aerospace fields

3D LAB

To be continued...

Gran Sasso National Laboratory – LNGS

Neutron Techniques (Bragg-edge, CT Imaging) in Japan:

- Hokkaido University (Fall 2023 free of charge beam time)
- J-Parc (First half of 2024 by proposal)

Innovative Multi-Materials by SLM:

Copper, ASTM 316L, Tungsten

NAMOR (Neutrons for Additive Manufacturing On-site Research) Experiment

CSN5 LNGS/INFN-FI/INFN-TO

CAD/CAM at Mechanical Workshop Dept.

- 5 Axis CB Ferrari 3 Axis Makino PS105 3 Axis Hurco
- Total integration with AM

